ترغب بنشر مسار تعليمي؟ اضغط هنا

Rigorous vector wave propagation for arbitrary flat media

205   0   0.0 ( 0 )
 نشر من قبل Steven Bos
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulation of the system has to be performed in which Maxwells equations are rigorously solved. We present the first results of a python code that we are developing to perform multiscale end-to-end wave propagation simulations that include all relevant physics. Currently we can handle plane-parallel near- and far-field vector diffraction effects of propagating waves in homogeneous isotropic and anisotropic materials, refraction and reflection of flat parallel surfaces, interference effects in thin films and unpolarized light. We show that the code has a numerical precision on the order of 1E-16 for non-absorbing isotropic and anisotropic materials. For absorbing materials the precision is on the order of 1E-8. The capabilities of the code are demonstrated by simulating a converging beam reflecting from a flat aluminium mirror at normal incidence.



قيم البحث

اقرأ أيضاً

The extreme magnetoelectric medium (EME medium) is defined in terms of two medium dyadics, $alpha$, producing electric polarization by the magnetic field and $beta$, producing magnetic polarization by the electric field. Plane-wave propagation of tim e-harmonic fields of fixed finite frequency in the EME medium is studied. It is shown that (if $omega eq 0$) the dispersion equation has a cubic and homogeneous form, whence the wave vector $k$ is either zero or has arbitrary magnitude. In many cases there is no dispersion equation (NDE medium) to restrict the wave vector in an EME medium. Attention is paid to the case where the two medium dyadics have the same set of eigenvectors. In such a case the $k$ vector is restricted to three eigenplanes defined by the medium dyadics. The emergence of such a result is demonstrated by considering a more regular medium, and taking the limit of zero permittivity and permeability. The special case of uniaxial EME medium is studied in detail. It is shown that an interface of a uniaxial EME medium appears as a DB boundary when the axis of the medium is normal to the interface. More in general, EME media display interesting wave effects that can potentially be realized through metasurface engineering.
Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914)] by the presence of branches in the integral expression of the wave function. In this article, a method is proposed to eliminate these critical branches and hence to establish a modal expansion of the time-dependent wave function. The different components of the transient waves are physically interpreted as the contributions of distinct sets of modes and characterized accordingly. Then, the modal expansion is used to derive a modified analytical expression of the Sommerfeld precursor improving significantly the description of the amplitude and the oscillating period up to the arrival of the Brillouin precursor. The proposed method and results apply to all waves governed by the Helmholtz equations.
A fundamental manifestation of wave scattering in a disordered medium is the highly complex intensity pattern the waves acquire due to multi-path interference. Here we show that these intensity variations can be entirely suppressed by adding disorder -specific gain and loss components to the medium. The resulting constant-intensity (CI) waves in such non-Hermitian scattering landscapes are free of any backscattering and feature perfect transmission through the disorder. An experimental demonstration of these unique wave states is envisioned based on spatially modulated pump beams that can flexibly control the gain and loss components in an active medium.
We propose a general method to evaluate the material parameters for arbitrary shape transformation media. By solving the original coordinates in the transformed region via Laplaces equations, we can obtain the deformation field numerically, in turn t he material properties of the devices to be designed such as cloaks, rotators or concentrators with arbitrary shape. Devices which have non-fixed outer boundaries, such as beam guider, can also be designed by the proposed method. Examples with full wave simulation are given for illustration. In the end, wave velocity and energy change in the transformation media are discussed with help of the deformation view.
It is known that the Fresnel wave surfaces of transparent biaxial media have 4 singular points, located on two special directions. We show that, in more general media, the number of singularities can exceed 4. In fact, a highly symmetric linear mater ial is proposed whose Fresnel surface exhibits 16 singular points. Because, for every linear material, the dispersion equation is quartic, we conclude that 16 is the maximum number of isolated singularities. The identity of Fresnel and Kummer surfaces, which holds true for media with a certain symmetry (zero skewon piece), provides an elegant interpretation of the results. We describe a metamaterial realization for our linear medium with 16 singular points. It is found that an appropriate combination of metal bars, split-ring resonators, and magnetized particles can generate the correct permittivity, permeability, and magnetoelectric moduli. Lastly, we discuss the arrangement of the singularities in terms of Kummers (16,6)-configuration of points and planes. An investigation parallel to ours, but in linear elasticity, is suggested for future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا