ترغب بنشر مسار تعليمي؟ اضغط هنا

Light propagation in local and linear media: Fresnel-Kummer wave surfaces with 16 singular points

87   0   0.0 ( 0 )
 نشر من قبل Alberto Favaro
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that the Fresnel wave surfaces of transparent biaxial media have 4 singular points, located on two special directions. We show that, in more general media, the number of singularities can exceed 4. In fact, a highly symmetric linear material is proposed whose Fresnel surface exhibits 16 singular points. Because, for every linear material, the dispersion equation is quartic, we conclude that 16 is the maximum number of isolated singularities. The identity of Fresnel and Kummer surfaces, which holds true for media with a certain symmetry (zero skewon piece), provides an elegant interpretation of the results. We describe a metamaterial realization for our linear medium with 16 singular points. It is found that an appropriate combination of metal bars, split-ring resonators, and magnetized particles can generate the correct permittivity, permeability, and magnetoelectric moduli. Lastly, we discuss the arrangement of the singularities in terms of Kummers (16,6)-configuration of points and planes. An investigation parallel to ours, but in linear elasticity, is suggested for future research.



قيم البحث

اقرأ أيضاً

135 - Alberto Favaro 2016
The propagation of light through bianisotropic materials is studied in the geometrical optics approximation. For that purpose, we use the quartic general dispersion equation specified by the Tamm-Rubilar tensor, which is cubic in the electromagnetic response tensor of the medium. A collection of different and remarkable Fresnel (wave) surfaces is gathered, and unified via the projective geometry of Kummer surfaces.
Geometrical optics describes, with good accuracy, the propagation of high-frequency plane waves through an electromagnetic medium. Under such approximation, the behaviour of the electromagnetic fields is characterised by just three quantities: the te mporal frequency $omega$, the spatial wave (co)vector $k$, and the polarisation (co)vector $a$. Numerous key properties of a given optical medium are determined by the Fresnel surface, which is the visual counterpart of the equation relating $omega$ and $k$. For instance, the propagation of electromagnetic waves in a uniaxial crystal, such as calcite, is represented by two light-cones. Kummer, whilst analysing quadratic line complexes as models for light rays in an optical apparatus, discovered in the framework of projective geometry a quartic surface that is linked to the Fresnel one. Given an arbitrary dispersionless linear (meta)material or vacuum, we aim to establish whether the resulting Fresnel surface is equivalent to, or is more general than, a Kummer surface.
The extreme magnetoelectric medium (EME medium) is defined in terms of two medium dyadics, $alpha$, producing electric polarization by the magnetic field and $beta$, producing magnetic polarization by the electric field. Plane-wave propagation of tim e-harmonic fields of fixed finite frequency in the EME medium is studied. It is shown that (if $omega eq 0$) the dispersion equation has a cubic and homogeneous form, whence the wave vector $k$ is either zero or has arbitrary magnitude. In many cases there is no dispersion equation (NDE medium) to restrict the wave vector in an EME medium. Attention is paid to the case where the two medium dyadics have the same set of eigenvectors. In such a case the $k$ vector is restricted to three eigenplanes defined by the medium dyadics. The emergence of such a result is demonstrated by considering a more regular medium, and taking the limit of zero permittivity and permeability. The special case of uniaxial EME medium is studied in detail. It is shown that an interface of a uniaxial EME medium appears as a DB boundary when the axis of the medium is normal to the interface. More in general, EME media display interesting wave effects that can potentially be realized through metasurface engineering.
Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914)] by the presence of branches in the integral expression of the wave function. In this article, a method is proposed to eliminate these critical branches and hence to establish a modal expansion of the time-dependent wave function. The different components of the transient waves are physically interpreted as the contributions of distinct sets of modes and characterized accordingly. Then, the modal expansion is used to derive a modified analytical expression of the Sommerfeld precursor improving significantly the description of the amplitude and the oscillating period up to the arrival of the Brillouin precursor. The proposed method and results apply to all waves governed by the Helmholtz equations.
When a monochromatic electromagnetic plane-wave arrives at the flat interface between its transparent host (i.e., the incidence medium) and an amplifying (or gainy) second medium, the incident beam splits into a reflected wave and a transmitted wave. In general, there is a sign ambiguity in connection with the k-vector of the transmitted beam, which requires at the outset that one decide whether the transmitted beam should grow or decay as it recedes from the interface. The question has been posed and addressed most prominently in the context of incidence at large angles from a dielectric medium of high refractive index onto a gain medium of lower refractive index. Here, the relevant sign of the transmitted k-vector determines whether the evanescent-like waves within the gain medium exponentially grow or decay away from the interface. We examine this and related problems in a more general setting, where the incident beam is taken to be a finite-duration wavepacket whose footprint in the interfacial plane has a finite width. Cases of reflection from and transmission through a gainy slab of finite-thickness as well as those associated with a semi-infinite gain medium will be considered. The broadness of the spatio-temporal spectrum of our incident wavepacket demands that we develop a general strategy for deciding the signs of all the k-vectors that enter the gain medium. Such a strategy emerges from a consideration of the causality constraint that is naturally imposed on both the reflected and transmitted wavepackets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا