ﻻ يوجد ملخص باللغة العربية
The feedback from an active galactic nucleus (AGN) is frequently invoked as a mechanism through which gas can be heated or removed from a galaxy. However, gas fraction measurements in AGN hosts have yielded mixed support for this scenario. Here, we re-visit the assessment of fgas (=MHI/M*) in z<0.05 AGN hosts in the Sloan Digital Sky Survey (SDSS) using two complementary techniques. First, we investigate fgas for 75 AGN host galaxies in the extended GALEX Arecibo SDSS Survey (xGASS), whose atomic gas fractions are complete to a few percent. Second, we construct HI spectral stacks of 1562 AGN from the Arecibo Legacy Fast ALFA (ALFALFA) survey, which enables us to extend the AGN sample to lower stellar masses. Both techniques find that, at fixed M*, AGN hosts with log M*>10.2 are HI rich by a factor of ~2. However, this gas fraction excess disappears when the control sample is additionally matched in star formation rate (SFR), indicating that these AGN hosts are actually HI normal. At lower stellar mass, the stacking analysis reveals that AGN hosts are HI poor at fixed stellar mass. In the lowest M* regime probed by our sample, 9<log M*<9.6, the HI deficit in AGN hosts is a factor of ~4, and remains at a factor of ~2 even when the control sample is additionally matched in SFR. Our results help reconcile previously conflicting results, by showing that matching control samples by more than just stellar mass is critical for a rigourous comparison.
We show that the mass fraction f_atm = 1.35*MHI/M of neutral atomic gas (HI and He) in isolated local disk galaxies of baryonic mass M is well described by a straightforward stability model for flat exponential disks. In the outer disk parts, where g
We measured the stellar velocity dispersions of 15 active galactic nucleus (AGN) host galaxies at redshifts as high as $sim 0.34$. Combining these with published velocity dispersion measurements from the literature, we study the Fundamental Plane of
We have recently suggested that dust growth in the cold gas phase dominates the dust abundance in elliptical galaxies while dust is efficiently destroyed in the hot X-ray emitting plasma (hot gas). In order to understand the dust evolution in ellipti
Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 microns have revealed a weak absorption feature due to two lines of the molecular ion H3+. The observed wavelength of the feature corresponds to veloci
Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster mediu