ترغب بنشر مسار تعليمي؟ اضغط هنا

Active galactic nucleus feedback in clusters of galaxies

139   0   0.0 ( 0 )
 نشر من قبل Elizabeth L. Blanton
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.



قيم البحث

اقرأ أيضاً

We have recently suggested that dust growth in the cold gas phase dominates the dust abundance in elliptical galaxies while dust is efficiently destroyed in the hot X-ray emitting plasma (hot gas). In order to understand the dust evolution in ellipti cal galaxies, we construct a simple model that includes dust growth in the cold gas and dust destruction in the hot gas. We also take into account the effect of mass exchange between these two gas components induced by active galactic nucleus (AGN) feedback. We survey reasonable ranges of the relevant parameters in the model and find that AGN feedback cycles actually produce a variety in cold gas mass and dust-to-gas ratio. By comparing with an observational sample of nearby elliptical galaxies, we find that, although the dust-to-gas ratio varies by an order of magnitude in our model, the entire range of the observed dust-to-gas ratios is difficult to be reproduced under a single parameter set. Variation of the dust growth efficiency is the most probable solution to explain the large variety in dust-to-gas ratio of the observational sample. Therefore, dust growth can play a central role in creating the variation in dust-to-gas ratio through the AGN feedback cycle and through the variation in dust growth efficiency.
We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wi nd interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous hot hydrostatic medium. The outflow floods through the inter-cloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically, rather than in a disc. In the latter case the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGN, they are likely to be important in the cosmological feedback cycles of galaxy formation.
We present the rest-frame optical morphologies of active galactic nucleus (AGN) host galaxies at 1.5<z<3, using near-infrared imaging from the Hubble Space Telescope Wide Field Camera 3, the first such study of AGN host galaxies at these redshifts. T he AGN are X-ray selected from the Chandra Deep Field South and have typical luminosities of 1E42 < L_X < 1E44 erg/s. Accreting black holes in this luminosity and redshift range account for a substantial fraction of the total space density and black hole mass growth over cosmic time; they thus represent an important mode of black hole growth in the universe. We find that the majority (~80%) of the host galaxies of these AGN have low Sersic indices indicative of disk-dominated light profiles, suggesting that secular processes govern a significant fraction of the cosmic growth of black holes. That is, many black holes in the present-day universe grew much of their mass in disk-dominated galaxies and not in early-type galaxies or major mergers. The properties of the AGN host galaxies are furthermore indistinguishable from their parent galaxy population and we find no strong evolution in either effective radii or morphological mix between z~2 and z~0.05.
Supermassive black holes (SMBHs) have been detected in the centers of most nearby massive galaxies. Galaxies today are the products of billions of years of galaxy mergers, but also billions of years of SMBH activity as active galactic nuclei (AGNs) t hat is connected to galaxy mergers. In this context, detection of AGN pairs should be relatively common. Observationally, however, dual AGN are scant, being just a few percent of all AGN. In this Letter we investigate the triggering of AGN activity in merging galaxies via a suite of high resolution hydrodynamical simulations. We follow the dynamics and accretion onto the SMBHs as they move from separations of tens of kiloparsecs to tens of parsecs. Our resolution, cooling and star formation implementation produce an inhomogeneous, multi-phase interstellar medium, allowing us to accurately trace star formation and accretion onto the SMBHs. We study the impact of gas content, morphology, and mass ratio, allowing us to study AGN activity and dynamics across a wide range of relevant conditions. We test when the two AGN are simultaneously detectable, for how long and at which separations. We find that strong dual AGN activity occurs during the late phases of the mergers, at small separations (<1-10 kpc) below the resolution limit of most surveys. Much of the SMBH accretion is not simultaneous, limiting the dual AGN fraction detectable through imaging and spectroscopy to a few percent, in agreement with observational samples.
The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum emission at the galactic center. Quasi-simultaneous multi-frequency observations using the Very Large Array (VLA) from 5 GHz (6 cm) to 22 GHz (1.3 cm) showe d inverted spectra in all epochs, which were intra-month variable, as well as complicated spectral features that cannot be represented by a simple power law, indicating multiple blobs in nuclear jets. Using the Nobeyama Millimeter Array (NMA), we discovered a large amplitude variable emission at 100 GHz (3 mm), which had higher flux densities at most epochs than those of the VLA observations. A James Clerk Maxwell Telescope (JCMT) observation at 347 GHz (850 micron) served an upper limit of dust contamination. The inverted radio spectrum of the nucleus NGC 4258 is suggestive of an analogy to our Galactic center Sgr A*, but with three orders of magnitude higher radio luminosity. In addition to the LLAGN M 81, we discuss the nucleus of NGC 4258 as another up-scaled version of Sgr A*.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا