ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean Test with Fewer Observation than Dimension and Ratio Unbiased Estimator for Correlation Matrix

86   0   0.0 ( 0 )
 نشر من قبل Tiefeng Jiang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Hotellings T-squared test is a classical tool to test if the normal mean of a multivariate normal distribution is a specified one or the means of two multivariate normal means are equal. When the population dimension is higher than the sample size, the test is no longer applicable. Under this situation, in this paper we revisit the tests proposed by Srivastava and Du (2008), who revise the Hotellings statistics by replacing Wishart matrices with their diagonal matrices. They show the revised statistics are asymptotically normal. We use the random matrix theory to examine their statistics again and find that their discovery is just part of the big picture. In fact, we prove that their statistics, decided by the Euclidean norm of the population correlation matrix, can go to normal, mixing chi-squared distributions and a convolution of both. Examples are provided to show the phase transition phenomenon between the normal and mixing chi-squared distributions. The second contribution of ours is a rigorous derivation of an asymptotic ratio-unbiased-estimator of the squared Euclidean norm of the correlation matrix.



قيم البحث

اقرأ أيضاً

Multivariate linear regressions are widely used statistical tools in many applications to model the associations between multiple related responses and a set of predictors. To infer such associations, it is often of interest to test the structure of the regression coefficients matrix, and the likelihood ratio test (LRT) is one of the most popular approaches in practice. Despite its popularity, it is known that the classical $chi^2$ approximations for LRTs often fail in high-dimensional settings, where the dimensions of responses and predictors $(m,p)$ are allowed to grow with the sample size $n$. Though various corrected LRTs and other test statistics have been proposed in the literature, the fundamental question of when the classic LRT starts to fail is less studied, an answer to which would provide insights for practitioners, especially when analyzing data with $m/n$ and $p/n$ small but not negligible. Moreover, the power performance of the LRT in high-dimensional data analysis remains underexplored. To address these issues, the first part of this work gives the asymptotic boundary where the classical LRT fails and develops the corrected limiting distribution of the LRT for a general asymptotic regime. The second part of this work further studies the test power of the LRT in the high-dimensional setting. The result not only advances the current understanding of asymptotic behavior of the LRT under alternative hypothesis, but also motivates the development of a power-enhanced LRT. The third part of this work considers the setting with $p>n$, where the LRT is not well-defined. We propose a two-step testing procedure by first performing dimension reduction and then applying the proposed LRT. Theoretical properties are developed to ensure the validity of the proposed method. Numerical studies are also presented to demonstrate its good performance.
182 - Peter S. Chami , Bernd Sing , 2012
We propose a two parameter ratio-product-ratio estimator for a finite population mean in a simple random sample without replacement following the methodology in Ray and Sahai (1980), Sahai and Ray (1980), Sahai and Sahai (1985) and Singh and Ruiz Esp ejo (2003). The bias and mean square error of our proposed estimator are obtained to the first degree of approximation. We derive conditions for the parameters under which the proposed estimator has smaller mean square error than the sample mean, ratio and product estimators. We carry out an application showing that the proposed estimator outperforms the traditional estimators using groundwater data taken from a geological site in the state of Florida.
267 - Jeremie Kellner 2014
A new goodness-of-fit test for normality in high-dimension (and Reproducing Kernel Hilbert Space) is proposed. It shares common ideas with the Maximum Mean Discrepancy (MMD) it outperforms both in terms of computation time and applicability to a wide r range of data. Theoretical results are derived for the Type-I and Type-II errors. They guarantee the control of Type-I error at prescribed level and an exponentially fast decrease of the Type-II error. Synthetic and real data also illustrate the practical improvement allowed by our test compared with other leading approaches in high-dimensional settings.
The goal of this paper is to show that a single robust estimator of the mean of a multivariate Gaussian distribution can enjoy five desirable properties. First, it is computationally tractable in the sense that it can be computed in a time which is a t most polynomial in dimension, sample size and the logarithm of the inverse of the contamination rate. Second, it is equivariant by translations, uniform scaling and orthogonal transformations. Third, it has a high breakdown point equal to $0.5$, and a nearly-minimax-rate-breakdown point approximately equal to $0.28$. Fourth, it is minimax rate optimal, up to a logarithmic factor, when data consists of independent observations corrupted by adversarially chosen outliers. Fifth, it is asymptotically efficient when the rate of contamination tends to zero. The estimator is obtained by an iterative reweighting approach. Each sample point is assigned a weight that is iteratively updated by solving a convex optimization problem. We also establish a dimension-free non-asymptotic risk bound for the expected error of the proposed estimator. It is the first result of this kind in the literature and involves only the effective rank of the covariance matrix. Finally, we show that the obtained results can be extended to sub-Gaussian distributions, as well as to the cases of unknown rate of contamination or unknown covariance matrix.
An important problem in large scale inference is the identification of variables that have large correlations or partial correlations. Recent work has yielded breakthroughs in the ultra-high dimensional setting when the sample size $n$ is fixed and t he dimension $p rightarrow infty$ ([Hero, Rajaratnam 2011, 2012]). Despite these advances, the correlation screening framework suffers from some serious practical, methodological and theoretical deficiencies. For instance, theoretical safeguards for partial correlation screening requires that the population covariance matrix be block diagonal. This block sparsity assumption is however highly restrictive in numerous practical applications. As a second example, results for correlation and partial correlation screening framework requires the estimation of dependence measures or functionals, which can be highly prohibitive computationally. In this paper, we propose a unifying approach to correlation and partial correlation mining which specifically goes beyond the block diagonal correlation structure, thus yielding a methodology that is suitable for modern applications. By making connections to random geometric graphs, the number of highly correlated or partial correlated variables are shown to have novel compound Poisson finite-sample characterizations, which hold for both the finite $p$ case and when $p rightarrow infty$. The unifying framework also demonstrates an important duality between correlation and partial correlation screening with important theoretical and practical consequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا