ﻻ يوجد ملخص باللغة العربية
Recently, the ANITA collaboration reported on two upward-going extensive air shower events consistent with a primary particle that emerges from the surface of the ice. These events may be of $ u_tau$ origin, in which the neutrino interacts within the Earth to produce a $tau$ lepton that emerges from the Earth, decays in the atmosphere, and initiates an extensive air shower. In this paper we estimate an upper bound on the ANITA acceptance to a diffuse $ u_tau$ flux detected via $tau$-lepton-induced air showers within the bounds of Standard Model (SM) uncertainties. By comparing this estimate with the acceptance of Pierre Auger Observatory and IceCube and assuming SM interactions, we conclude that a $ u_tau$ origin of these events would imply a neutrino flux at least two orders of magnitude above current bounds.
Two unusual neutrino events in the Antarctic Impulse Transient Antenna (ANITA) appear to have been generated by air showers from a particle emerging from the Earth at angles 25-35 degrees above the horizon. We evaluate the effective aperture for ANIT
The Antarctic Impulsive Transient Antenna (ANITA) collaboration has reported a total of three neutrino candidates from the experiments first three flights. One of these was the lone candidate in a search for Askaryan radio emission, and the others ca
During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy up-going air shower and co
The excess of neutrino candidate events detected by IceCube from the direction of TXS 0506+056 has generated a great deal of interest in blazars as sources of high-energy neutrinos. In this study, we analyze the publicly available portion of the IceC
The ANITA balloon experiment was designed to detect radio signals initiated by neutrinos and cosmic ray air showers. These signals are typically discriminated by the polarization and phase