ﻻ يوجد ملخص باللغة العربية
The excess of neutrino candidate events detected by IceCube from the direction of TXS 0506+056 has generated a great deal of interest in blazars as sources of high-energy neutrinos. In this study, we analyze the publicly available portion of the IceCube dataset, performing searches for neutrino point sources in spatial coincidence with the blazars and other active galactic nuclei contained in the Fermi 3LAC and the Roma BZCAT catalogs, as well as in spatial and temporal coincidence with flaring sources identified in the Fermi Collaborations All-Sky Variability Analysis (FAVA). We find no evidence that blazars generate a significant flux of high-energy neutrinos, and conclude that no more than 5-15% of the diffuse flux measured by IceCube can originate from this class of objects. While we cannot rule out the possibility that TXS 0506+056 has at times generated significant neutrino emission, we find that such behavior cannot be common among blazars, requiring TXS 0506+056 to be a rather extreme outlier and not representative of the overall blazar population. The bulk of the diffuse high-energy neutrino flux must instead be generated by a significantly larger population of less-luminous sources, such as non-blazar active galactic nuclei.
The origin of the astrophysical neutrino flux reported by the IceCube Collaboration remains an open question. In this study, we use three years of publicly available IceCube data to search for evidence of neutrino emission from the blazars and non-bl
Mysteries about the origin of high-energy cosmic neutrinos have deepened by the recent IceCube measurement of a large diffuse flux in the 10-100 TeV range. Based on the standard disk-corona picture of active galactic nuclei (AGN), we present a phenom
Active galactic nuclei (AGN) with jets seen at small viewing angles are the most luminous and abundant objects in the $gamma$-ray sky. AGN with jets misaligned along the line-of-sight appear fainter in the sky, but are more numerous than the brighter
The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Though they play a key role in cultivating the cosmological environment and/or
We briefly review the synergy between X-ray and infrared observations for Active Galactic Nuclei (AGNs) detected in cosmic X-ray surveys, primarily with XMM-Newton, Chandra, and NuSTAR. We focus on two complementary aspects of this X-ray-infrared syn