ﻻ يوجد ملخص باللغة العربية
We deal with the virtual element method (VEM) for solving the Poisson equation on a domain $Omega$ with curved boundaries. Given a polygonal approximation $Omega_h$ of the domain $Omega$, the standard order $m$ VEM [6], for $m$ increasing, leads to a suboptimal convergence rate. We adapt the approach of [16] to VEM and we prove that an optimal convergence rate can be achieved by using a suitable correction depending on high order normal derivatives of the discrete solution at the boundary edges of $Omega_h$, which, to retain computability, is evaluated after applying the projector $Pi^ abla$ onto the space of polynomials. Numerical experiments confirm the theory.
This article is an account of the NABUCO project achieved during the summer camp CEMRACS 2019 devoted to geophysical fluids and gravity flows. The goal is to construct finite difference approximations of the transport equation with nonzero incoming b
In this work we report some results, obtained within the framework of the ERC Project CHANGE, on the impact on the performance of the virtual element method of the shape of the polygonal elements of the underlying mesh. More in detail, after reviewin
We consider approximating the solution of the Helmholtz exterior Dirichlet problem for a nontrapping obstacle, with boundary data coming from plane-wave incidence, by the solution of the corresponding boundary value problem where the exterior domain
In this paper a method is presented for evaluating the convolution of the Greens function for the Laplace operator with a specified function $rho(vec x)$ at all grid points in a rectangular domain $Omega subset {mathrm R}^{d}$ ($d = 1,2,3$), i.e. a s
We develop a stable finite difference method for the elastic wave equations in bounded media, where the material properties can be discontinuous at curved interfaces. The governing equations are discretized in second order form by a fourth or sixth o