ﻻ يوجد ملخص باللغة العربية
In this work we report some results, obtained within the framework of the ERC Project CHANGE, on the impact on the performance of the virtual element method of the shape of the polygonal elements of the underlying mesh. More in detail, after reviewing the state of the art, we present a) an experimental analysis of the convergence of the VEM under condition violating the standard shape regularity assumptions, b) an analysis of the correlation between some mesh quality metrics and a set of different performance indexes, and c) a suitably designed mesh quality indicator, aimed at predicting the quality of the performance of the VEM on a given mesh.
We deal with the virtual element method (VEM) for solving the Poisson equation on a domain $Omega$ with curved boundaries. Given a polygonal approximation $Omega_h$ of the domain $Omega$, the standard order $m$ VEM [6], for $m$ increasing, leads to a
This work presents a high-accuracy, mesh-free, generalized Stokes theorem-based numerical quadrature scheme for integrating functions over trimmed parametric surfaces and volumes. The algorithm relies on two fundamental steps: (1) We iteratively redu
The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of
This paper develops entropy stable (ES) adaptive moving mesh schemes for the 2D and 3D special relativistic hydrodynamic (RHD) equations. They are built on the ES finite volume approximation of the RHD equations in curvilinear coordinates, the discre
A Lagrangian-type numerical scheme called the comoving mesh method or CMM is developed for numerically solving certain classes of moving boundary problems which include, for example, the classical Hele-Shaw flow problem and the well-known mean curvat