ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxygen Electromigration and Energy Band Reconstruction Induced by Electrolyte Field Effect at Oxide Interfaces

97   0   0.0 ( 0 )
 نشر من قبل Shengwei Zeng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrolyte gating is a powerful means for tuning the carrier density and exploring the resultant modulation of novel properties on solid surfaces. However, the mechanism, especially its effect on the oxygen migration and electrostatic charging at the oxide heterostructures, is still unclear. Here we explore the electrolyte gating on oxygen-deficient interfaces between SrTiO3 (STO) crystals and LaAlO3 (LAO) overlayer through the measurements of electrical transport, X-ray absorption spectroscopy (XAS) and photoluminescence (PL) spectra. We found that oxygen vacancies (Ovac) were filled selectively and irreversibly after gating due to oxygen electromigration at the amorphous LAO/STO interface, resulting in a reconstruction of its interfacial band structure. Because of the filling of Ovac, the amorphous interface also showed an enhanced electron mobility and quantum oscillation of the conductance. Further, the filling effect could be controlled by the degree of the crystallinity of the LAO overlayer by varying the growth temperatures. Our results reveal the different effects induced by electrolyte gating, providing further clues to understand the mechanism of electrolyte gating on buried interfaces and also opening a new avenue for constructing high-mobility oxide interfaces.



قيم البحث

اقرأ أيضاً

We show that oxygen vacancies at titanate interfaces induce a complex multiorbital reconstruction which involves a lowering of the local symmetry and an inversion of t2g and eg orbitals resulting in the occupation of the eg orbitals of Ti atoms neigh boring the O vacancy. The orbital reconstruction depends strongly on the clustering of O vacancies and can be accompanied by a magnetic splitting between the local eg orbitals with lobes directed towards the vacancy and interface dxy orbitals. The reconstruction generates a two-dimensional interface magnetic state not observed in bulk SrTiO3. Using generalized gradient approximation (LSDA) with intra-atomic Coulomb repulsion (GGA+U), we find that this magnetic state is common for titanate surfaces and interfaces.
393 - I. Pallecchi , F. Telesio , D. Li 2015
Understanding the nature of charge carriers at the LaAlO3/SrTiO3 interface is one of the major open issues in the full comprehension of the charge confinement phenomenon in oxide heterostructures. Here, we investigate thermopower to study the electro nic structure in LaAlO3/SrTiO3 at low temperature as a function of gate field. In particular, under large negative gate voltage, corresponding to the strongly depleted charge density regime, thermopower displays record-high negative values of the order of 10^4 - 10^5 microV/K, oscillating at regular intervals as a function of the gate voltage. The huge thermopower magnitude can be attributed to the phonon-drag contribution, while the oscillations map the progressive depletion and the Fermi level descent across a dense array of localized states lying at the bottom of the Ti 3d conduction band. This study is the first direct evidence of a localized Anderson tail in the two-dimensional (2D) electron liquid at the LaAlO3/SrTiO3 interface.
Geometric phases in condensed matter play a central role in topological transport phenomena such as the quantum, spin and anomalous Hall effect (AHE). In contrast to the quantum Hall effect - which is characterized by a topological invariant and robu st against perturbations - the AHE depends on the Berry curvature of occupied bands at the Fermi level and is therefore highly sensitive to subtle changes in the band structure. A unique platform for its manipulation is provided by transition metal oxide heterostructures, where engineering of emergent electrodynamics becomes possible at atomically sharp interfaces. We demonstrate that the Berry curvature and its corresponding vector potential can be manipulated by interface engineering of the correlated itinerant ferromagnet SrRuO$_3$ (SRO). Measurements of the AHE reveal the presence of two interface-tunable spin-polarized conduction channels. Using theoretical calculations, we show that the tunability of the AHE at SRO interfaces arises from the competition between two topologically non-trivial bands. Our results demonstrate how reconstructions at oxide interfaces can be used to control emergent electrodynamics on a nanometer-scale, opening new routes towards spintronics and topological electronics.
Interfaces between complex oxides constitute a unique playground for 2D electron systems (2DES), where superconductivity and magnetism can arise from combinations of bulk insulators. The 2DES at the LaAlO3/SrTiO3 interface is one of the most studied in this regard, and its origin is determined by both the presence of a polar field in LaAlO3 and the insurgence of point defects, such as oxygen vacancies and intermixed cations. These defects usually reside in the conduction channel and are responsible for a decreased electronic mobility. In this work we use an amorphous WO3 overlayer to control the defect formation and obtain an increased electron mobility and effective mass in WO3/LaAlO3/SrTiO3 heterostructures. The studied system shows a sharp insulator-to-metal transition as a function of both LaAlO3 and WO3 layer thickness. Low-temperature magnetotransport reveals a strong magnetoresistance reaching 900% at 10 T and 1.5 K, the presence of multiple conduction channels with carrier mobility up to 80 000 cm2/Vs and an unusually high effective mass of 5.6 me. The amorphous character of the WO3 overlayer makes this a versatile approach for defect control at oxide interfaces, which could be applied to other heterestrostures disregarding the constraints imposed by crystal symmetry.
Diluted oxide interface of LaAl1-xMnxO/SrTiO3 (LAMO/STO) provides a new way of tuning the ground states of the interface between the two band insulators of LAO and STO from metallic/superconducting to highly insulating. Increasing the Mn doping level (x) leads to a delicate control of the carrier density as well as a raise in the electron mobility and spin polarization. Herein, we demonstrate a tunable Rashba spin-orbit coupling (SOC) and spin polarization of LAMO/STO (0.2 <= x <= 0.3) by applying a back gate. The presence of SOC causes the splitting of energy band into two branches by a spin splitting energy. The maximum spin splitting energy depends on the Mn doping and decreases with the increasing Mn content and then vanishes at x = 0.3. The carrier density dependence of the spin splitting energy for different compositions shows a dome-shaped behavior with a maximum at different normalized carrier density. These findings have not yet been observed in LAO/STO interfaces. A fully back-gate-tunable spin-polarized 2DEL is observed at the interface with x = 0.3 where only dxy orbits are populated (5.3E12 cm-2 <= ns <= 1.0E13 cm-2). The present results shed light on unexplored territory in SOC at STO-base oxide heterostructures and make LAMO/STO an intriguing platform for spin-related phenomena in 3d-electron systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا