ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Oscillating Thermopower at Oxide Interfaces

361   0   0.0 ( 0 )
 نشر من قبل Ilaria Pallecchi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the nature of charge carriers at the LaAlO3/SrTiO3 interface is one of the major open issues in the full comprehension of the charge confinement phenomenon in oxide heterostructures. Here, we investigate thermopower to study the electronic structure in LaAlO3/SrTiO3 at low temperature as a function of gate field. In particular, under large negative gate voltage, corresponding to the strongly depleted charge density regime, thermopower displays record-high negative values of the order of 10^4 - 10^5 microV/K, oscillating at regular intervals as a function of the gate voltage. The huge thermopower magnitude can be attributed to the phonon-drag contribution, while the oscillations map the progressive depletion and the Fermi level descent across a dense array of localized states lying at the bottom of the Ti 3d conduction band. This study is the first direct evidence of a localized Anderson tail in the two-dimensional (2D) electron liquid at the LaAlO3/SrTiO3 interface.



قيم البحث

اقرأ أيضاً

Geometric phases in condensed matter play a central role in topological transport phenomena such as the quantum, spin and anomalous Hall effect (AHE). In contrast to the quantum Hall effect - which is characterized by a topological invariant and robu st against perturbations - the AHE depends on the Berry curvature of occupied bands at the Fermi level and is therefore highly sensitive to subtle changes in the band structure. A unique platform for its manipulation is provided by transition metal oxide heterostructures, where engineering of emergent electrodynamics becomes possible at atomically sharp interfaces. We demonstrate that the Berry curvature and its corresponding vector potential can be manipulated by interface engineering of the correlated itinerant ferromagnet SrRuO$_3$ (SRO). Measurements of the AHE reveal the presence of two interface-tunable spin-polarized conduction channels. Using theoretical calculations, we show that the tunability of the AHE at SRO interfaces arises from the competition between two topologically non-trivial bands. Our results demonstrate how reconstructions at oxide interfaces can be used to control emergent electrodynamics on a nanometer-scale, opening new routes towards spintronics and topological electronics.
We have investigated two-dimensional thermoelectric properties in transition metal oxide heterostructures. In particular, we adopted an unprecedented approach to direct tuning of the 2D carrier density using fractionally {delta}-doped oxide superlatt ices. By artificially controlling the carrier density in the 2D electron gas that emerges at a LaxSr1-xTiO3 {delta}-doped layer, we demonstrate that a thermopower as large as 408 {mu}V K-1 can be reached. This approach also yielded a power factor of the 2D carriers 117 {mu}Wcm-1K-2, which is one of the largest reported values from transition metal oxide based materials. The promising result can be attributed to the anisotropic band structure in the 2D system, indicating that {delta}-doped oxide superlattices can be a good candidate for advanced thermoelectrics.
Diluted oxide interface of LaAl1-xMnxO/SrTiO3 (LAMO/STO) provides a new way of tuning the ground states of the interface between the two band insulators of LAO and STO from metallic/superconducting to highly insulating. Increasing the Mn doping level (x) leads to a delicate control of the carrier density as well as a raise in the electron mobility and spin polarization. Herein, we demonstrate a tunable Rashba spin-orbit coupling (SOC) and spin polarization of LAMO/STO (0.2 <= x <= 0.3) by applying a back gate. The presence of SOC causes the splitting of energy band into two branches by a spin splitting energy. The maximum spin splitting energy depends on the Mn doping and decreases with the increasing Mn content and then vanishes at x = 0.3. The carrier density dependence of the spin splitting energy for different compositions shows a dome-shaped behavior with a maximum at different normalized carrier density. These findings have not yet been observed in LAO/STO interfaces. A fully back-gate-tunable spin-polarized 2DEL is observed at the interface with x = 0.3 where only dxy orbits are populated (5.3E12 cm-2 <= ns <= 1.0E13 cm-2). The present results shed light on unexplored territory in SOC at STO-base oxide heterostructures and make LAMO/STO an intriguing platform for spin-related phenomena in 3d-electron systems.
Atomically sharp oxide heterostructures exhibit a range of novel physical phenomena that do not occur in the parent bulk compounds. The most prominent example is the appearance of highly conducting and superconducting states at the interface between the band insulators LaAlO3 and SrTiO3. Here we report a new emergent phenomenon at the LaMnO3/SrTiO3 interface in which an antiferromagnetic insulator abruptly transforms into a magnetic state that exhibits unexpected nanoscale superparamagnetic dynamics. Upon increasing the thickness of LaMnO3 above five unit cells, our scanning nanoSQUID-on-tip microscopy shows spontaneous formation of isolated magnetic islands of 10 to 50 nm diameter, which display random moment reversals by thermal activation or in response to an in-plane magnetic field. Our charge reconstruction model of the polar LaMnO3/SrTiO3 heterostructure describes the sharp emergence of thermodynamic phase separation leading to nucleation of metallic ferromagnetic islands in an insulating antiferromagnetic matrix. The model further suggests that the nearby superparamagnetic-ferromagnetic transition can be gate tuned, holding potential for applications in magnetic storage and spintronics.
Electrolyte gating is a powerful means for tuning the carrier density and exploring the resultant modulation of novel properties on solid surfaces. However, the mechanism, especially its effect on the oxygen migration and electrostatic charging at th e oxide heterostructures, is still unclear. Here we explore the electrolyte gating on oxygen-deficient interfaces between SrTiO3 (STO) crystals and LaAlO3 (LAO) overlayer through the measurements of electrical transport, X-ray absorption spectroscopy (XAS) and photoluminescence (PL) spectra. We found that oxygen vacancies (Ovac) were filled selectively and irreversibly after gating due to oxygen electromigration at the amorphous LAO/STO interface, resulting in a reconstruction of its interfacial band structure. Because of the filling of Ovac, the amorphous interface also showed an enhanced electron mobility and quantum oscillation of the conductance. Further, the filling effect could be controlled by the degree of the crystallinity of the LAO overlayer by varying the growth temperatures. Our results reveal the different effects induced by electrolyte gating, providing further clues to understand the mechanism of electrolyte gating on buried interfaces and also opening a new avenue for constructing high-mobility oxide interfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا