Let $f(x)=x^{2}(x^{2}-1)(x^{2}-2)(x^{2}-3).$ We prove that the Diophantine equation $ f(x)=2f(y)$ has no solutions in positive integers $x$ and $y$, except $(x, y)=(1, 1)$.
Suppose that $n$ is a positive integer. In this paper, we show that the exponential Diophantine equation $$(n-1)^{x}+(n+2)^{y}=n^{z}, ngeq 2, xyz eq 0$$ has only the positive integer solutions $(n,x,y,z)=(3,2,1,2), (3,1,2,3)$. The main tools on the p
roofs are Bakers theory and Bilu-Hanrot-Voutiers result on primitive divisors of Lucas numbers.
In this paper, we determine the primitive solutions of the Diophantine equation $(x-d)^2+x^2+(x+d)^2=y^n$ when $ngeq 2$ and $d=p^b$, $p$ a prime and $pleq 10^4$. The main ingredients are the characterization of primitive divisors on Lehmer sequences
and the development of an algorithmic method of proving the non-existence of integer solutions of the equation $f(x)=a^b$, where $f(x)inmathbb Z[x]$, $a$ a positive integer and $b$ an arbitrary positive integer.
We show that the Diophantine equation given by X^3+ XYZ = Y^2+Z^2+5 has no integral solution. As a consequence, we show that the family of elliptic curve given by the Weierstrass equations Y^2-kXY = X^3 - (k^2+5) has no integral point.
In this paper, we solve the equation of the title under the assumption that $gcd(x,d)=1$ and $ngeq 2$. This generalizes earlier work of the first author, Patel and Siksek [BPS16]. Our main tools include Frey-Hellegouarch curves and associated modular
forms, and an assortment of Chabauty-type techniques for determining rational points on curves of small positive genus.
We show that the diophantine equation $n^ell+(n+1)^ell + ...+ (n+k)^ell=(n+k+1)^ell+ ...+ (n+2k)^ell$ has no solutions in positive integers $k,n ge 1$ for all $ell ge 3$.