ﻻ يوجد ملخص باللغة العربية
Suppose that $n$ is a positive integer. In this paper, we show that the exponential Diophantine equation $$(n-1)^{x}+(n+2)^{y}=n^{z}, ngeq 2, xyz eq 0$$ has only the positive integer solutions $(n,x,y,z)=(3,2,1,2), (3,1,2,3)$. The main tools on the proofs are Bakers theory and Bilu-Hanrot-Voutiers result on primitive divisors of Lucas numbers.
In this paper, we determine the primitive solutions of the Diophantine equation $(x-d)^2+x^2+(x+d)^2=y^n$ when $ngeq 2$ and $d=p^b$, $p$ a prime and $pleq 10^4$. The main ingredients are the characterization of primitive divisors on Lehmer sequences
This work determine the entire family of positive integer solutions of the diophantine equation. The solution is described in terms of $frac{(m-1)(m+n-2)}{2} $ or $frac{(m-1)(m+n-1)}{2}$ positive parameters depending on $n$ even or odd. We find the s
Let $f(x)=x^{2}(x^{2}-1)(x^{2}-2)(x^{2}-3).$ We prove that the Diophantine equation $ f(x)=2f(y)$ has no solutions in positive integers $x$ and $y$, except $(x, y)=(1, 1)$.
In this paper, we solve the equation of the title under the assumption that $gcd(x,d)=1$ and $ngeq 2$. This generalizes earlier work of the first author, Patel and Siksek [BPS16]. Our main tools include Frey-Hellegouarch curves and associated modular
We show that the largest prime factor of $n^2+1$ is infinitely often greater than $n^{1.279}$. This improves the result of de la Bret`eche and Drappeau (2019) who obtained this with $1.2182$ in place of $1.279.$ The main new ingredients in the proof