ﻻ يوجد ملخص باللغة العربية
Gas density is widely believed to play a governing role in star formation. However, the exact role of density in setting the star formation rate remains debated. We also lack a general theory that explains how the gas density distribution in galaxies is set. The primary factor preventing the resolution of these issues is the limited number of observations of the gas density distribution across diverse environments. Centimeter- and millimeter-wave spectroscopy offer the most promising way forward in this field, but the key density-sensitive transitions are faint compared to the capabilities of current telescopes. In this chapter, we describe how a next-generation Very Large Array (ngVLA) represents the natural next step forward in this sensitivity-limited field. Such a facility would provide a crucial link between the `Milky Way and `Extragalactic views of star formation and dramatically advance our understanding of the drive and role of gas density in galaxies, building on current results from ALMA, NOEMA, the Green Bank Telescope, and other current facilities working in this area.
One of the outstanding questions in astronomy today is how gas flows from the circumgalactic medium (CGM) onto the disks of galaxies and then transitions from the diffuse atomic medium into molecular star-forming cores. For studies of the CGM, the Ne
Emission line observations of circumnuclear gas disks in the ALMA era have begun to resolve molecular gas tracer kinematics near supermassive black holes (BHs), enabling highly precise mass determination in the best cases. The ngVLA is capable of ext
Galactic winds are ubiquitously observed in galaxies both locally and in the high-redshift Universe. While these winds span many orders of magnitude in both temperature and density, observations of nearby galaxies show that the cold molecular phase t
Planets assemble in the midplanes of protoplanetary disks. The compositions of dust and gas in the disk midplane region determine the compositions of nascent planets, including their chemical hospitality to life. In this context, the distributions of
The goal of this science case is to accurately pin down the molecular gas content of high redshift galaxies. By targeting the CO ground transition, we circumvent uncertainties related to CO excitation. The ngVLA can observe the CO(1-0) line at virtua