ﻻ يوجد ملخص باللغة العربية
The synchronization of coupled oscillators is a phenomenon found throughout nature. Mechanical oscillators are paradigmatic among such systems, but realising them at the nanoscale is challenging. We report synchronization of the mechanical dynamics of a pair of optomechanical crystal cavities that are intercoupled with a mechanical link and support independent optical modes. In this regime they oscillate in anti-phase, which is in agreement with the predictions of our numerical model that considers reactive coupling. Finally, we show how to temporarily disable synchronization of the coupled system by actuating one of the cavities with a heating laser, so that both cavities oscillate independently. Our results can be upscaled to more than two cavities and are thus the first step towards realizing integrated networks of synchronized optomechanical oscillators. Such networks promise unparalleled performances for time-keeping and sensing purposes and unveil a new route for neuromorphic computing applications.
Silicon on insulator photonics has offered a versatile platform for the recent development of integrated optomechanical circuits. However, there are some constraints such as the high cost of the wafers and limitation to a single physical device level
Synchronization is of great scientific interest due to the abundant applications in a wide range of systems. We propose a scheme to achieve the controllable long-distance synchronization of two dissimilar optomechanical systems, which are unidirectio
Optomechanical structures are well suited to study photon-phonon interactions, and they also turn out to be potential building blocks for phononic circuits and quantum computing. In phononic circuits, in which information is carried and processed by
Lasers differ from other light sources in that they are coherent, and their coherence makes them indispensable to both fundamental research and practical application. In optomechanical cavities, phonon and photon lasing is facilitated by the ability
The combination of large per-photon optical force and small motional mass attainable in nanocavity optomechanical systems results in strong dynamical back-action between mechanical motion and the cavity light field. In this work we study the optical