ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-distance synchronization of unidirectionally cascaded optomechanical systems

80   0   0.0 ( 0 )
 نشر من قبل Tan Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Synchronization is of great scientific interest due to the abundant applications in a wide range of systems. We propose a scheme to achieve the controllable long-distance synchronization of two dissimilar optomechanical systems, which are unidirectionally coupled through a fiber with light. Synchronization, unsynchronization, and the dependence of the synchronization on driving laser strength and intrinsic frequency mismatch are studied based on the numerical simulation. Taking the fiber attenuation into account, its shown that two mechanical resonators can be synchronized over a distance of tens of kilometers. In addition, we also analyze the unidirectional synchronization of three optomechanical systems, demonstrating the scalability of our scheme.



قيم البحث

اقرأ أيضاً

Electromagnetically induced transparency has great theoretical and experimental importance in many physics subjects, such as atomic physics, quantum optics, and more recent cavity optomechanics. Optical delay is the most prominent feature of electrom agnetically induced transparency, and in cavity optomechanics optical delay is limited by mechanical dissipation rate of sideband-resolved mechanical modes. Here we demonstrate a cascaded optical transparency scheme by leveraging the parametric phonon-phonon coupling in a multimode optomechanical system, where a low damping mechanical mode in the unresolved-sideband regime is made to couple to an intermediate, high frequency mechanical mode in the resolved-sideband regime of an optical cavity. Extended optical delay and higher transmission, as well as optical advancing are demonstrated. These results provide a route to realize ultra-long optical delay, indicating a significant step toward integrated classical and quantum information storage devices.
The synchronization of coupled oscillators is a phenomenon found throughout nature. Mechanical oscillators are paradigmatic among such systems, but realising them at the nanoscale is challenging. We report synchronization of the mechanical dynamics o f a pair of optomechanical crystal cavities that are intercoupled with a mechanical link and support independent optical modes. In this regime they oscillate in anti-phase, which is in agreement with the predictions of our numerical model that considers reactive coupling. Finally, we show how to temporarily disable synchronization of the coupled system by actuating one of the cavities with a heating laser, so that both cavities oscillate independently. Our results can be upscaled to more than two cavities and are thus the first step towards realizing integrated networks of synchronized optomechanical oscillators. Such networks promise unparalleled performances for time-keeping and sensing purposes and unveil a new route for neuromorphic computing applications.
Synchronization dynamics of mutually coupled chaotic semiconductor lasers are investigated experimentally and compared to identical synchronization of unidirectionally coupled lasers. Mutual coupling shows high quality synchronization in a broad rang e of self-feedback and coupling strengths. It is found to be tolerant to significant parameter mismatch which for unidirectional coupling would result in loss of synchronization. The advantages of mutual coupling are emphasized in light of its potential use in chaos communications.
Abstract We report the experimental observation of molecular unidirectional rotation (UDR) echoes, and analyze their origin and behavior both classically and quantum mechanically. The molecules are excited by two time-delayed polarization-twisted ult rashort laser pulses and the echoes are measured by exploding the molecules and reconstructing their spatial orientation from the detected recoil ions momenta. Unlike alignment echoes which are induced by linearly polarized pulses, here the axial symmetry is broken by the twisted polarization, giving rise to molecular unidirectional rotation. We find that the rotation sense of the echo is governed by the twisting sense of the second pulse even when its intensity is much weaker than the intensity of the first pulse. In our theoretical study, we rely on classical phase space analysis and on three-dimensional quantum simulations of the laser-driven molecular dynamics. Both approaches nicely reproduce the experimental results. Echoes in general, and the unique UDR echoes in particular, provide new tools for studies of relaxation processes in dense molecular gases.
The synchronization of the motion of microresonators has attracted considerable attention. Here we present theoretical methods to synchronize the chaotic motion of two optical cavity modes in an optomechanical system, in which one of the optical mode s is strongly driven into chaotic motion and is coupled to another weakly-driven optical mode mediated by a mechanical resonator. In these optomechanical systems, we can obtain both complete and phase synchronization of the optical cavity modes in chaotic motion, starting from different initial states. We find that complete synchronization of chaos can be achieved in two identical cavity modes. In the strong-coupling small-detuning regime, we also {produce} phase synchronization of chaos between two nonidentical cavity modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا