ترغب بنشر مسار تعليمي؟ اضغط هنا

Does Haze Removal Help CNN-based Image Classification?

73   0   0.0 ( 0 )
 نشر من قبل Yanting Pei
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Hazy images are common in real scenarios and many dehazing methods have been developed to automatically remove the haze from images. Typically, the goal of image dehazing is to produce clearer images from which human vision can better identify the object and structural details present in the images. When the ground-truth haze-free image is available for a hazy image, quantitative evaluation of image dehazing is usually based on objective metrics, such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM). However, in many applications, large-scale images are collected not for visual examination by human. Instead, they are used for many high-level vision tasks, such as automatic classification, recognition and categorization. One fundamental problem here is whether various dehazing methods can produce clearer images that can help improve the performance of the high-level tasks. In this paper, we empirically study this problem in the important task of image classification by using both synthetic and real hazy image datasets. From the experimental results, we find that the existing image-dehazing methods cannot improve much the image-classification performance and sometimes even reduce the image-classification performance.



قيم البحث

اقرأ أيضاً

Haze removal is important for computational photography and computer vision applications. However, most of the existing methods for dehazing are designed for daytime images, and cannot always work well in the nighttime. Different from the imaging con ditions in the daytime, images captured in nighttime haze condition may suffer from non-uniform illumination due to artificial light sources, which exhibit low brightness/contrast and color distortion. In this paper, we present a new nighttime hazy imaging model that takes into account both the non-uniform illumination from artificial light sources and the scattering and attenuation effects of haze. Accordingly, we propose an efficient dehazing algorithm for nighttime hazy images. The proposed algorithm includes three sequential steps. i) It enhances the overall brightness by performing a gamma correction step after estimating the illumination from the original image. ii) Then it achieves a color-balance result by performing a color correction step after estimating the color characteristics of the incident light. iii) Finally, it remove the haze effect by applying the dark channel prior and estimating the point-wise environmental light based on the previous illumination-balance result. Experimental results show that the proposed algorithm can achieve illumination-balance and haze-free results with good color rendition ability.
Rain streak removal is an important issue and has recently been investigated extensively. Existing methods, especially the newly emerged deep learning methods, could remove the rain streaks well in many cases. However the essential factor in the gene rative procedure of the rain streaks, i.e., the motion blur, which leads to the line pattern appearances, were neglected by the deep learning rain streaks approaches and this resulted in over-derain or under-derain results. In this paper, we propose a novel rain streak removal approach using a kernel guided convolutional neural network (KGCNN), achieving the state-of-the-art performance with simple network architectures. We first model the rain streak interference with its motion blur mechanism. Then, our framework starts with learning the motion blur kernel, which is determined by two factors including angle and length, by a plain neural network, denoted as parameter net, from a patch of the texture component. Then, after a dimensionality stretching operation, the learned motion blur kernel is stretched into a degradation map with the same spatial size as the rainy patch. The stretched degradation map together with the texture patch is subsequently input into a derain convolutional network, which is a typical ResNet architecture and trained to output the rain streaks with the guidance of the learned motion blur kernel. Experiments conducted on extensive synthetic and real data demonstrate the effectiveness of the proposed method, which preserves the texture and the contrast while removing the rain streaks.
92 - Binghan Li , Wenrui Zhang , Mi Lu 2019
Dark Channel Prior (DCP) is a widely recognized traditional dehazing algorithm. However, it may fail in bright region and the brightness of the restored image is darker than hazy image. In this paper, we propose an effective method to optimize DCP. W e build a multiple linear regression haze-removal model based on DCP atmospheric scattering model and train this model with RESIDE dataset, which aims to reduce the unexpected errors caused by the rough estimations of transmission map t(x) and atmospheric light A. The RESIDE dataset provides enough synthetic hazy images and their corresponding groundtruth images to train and test. We compare the performances of different dehazing algorithms in terms of two important full-reference metrics, the peak-signal-to-noise ratio (PSNR) as well as the structural similarity index measure (SSIM). The experiment results show that our model gets highest SSIM value and its PSNR value is also higher than most of state-of-the-art dehazing algorithms. Our results also overcome the weakness of DCP on real-world hazy images
Hyperspectral image (HSI) classification has been widely adopted in applications involving remote sensing imagery analysis which require high classification accuracy and real-time processing speed. Methods based on Convolutional neural networks (CNNs ) have been proven to achieve state-of-the-art accuracy in classifying HSIs. However, CNN models are often too computationally intensive to achieve real-time response due to the high dimensional nature of HSI, compared to traditional methods such as Support Vector Machines (SVMs). Besides, previous CNN models used in HSI are not specially designed for efficient implementation on embedded devices such as FPGAs. This paper proposes a novel CNN-based algorithm for HSI classification which takes into account hardware efficiency. A customized architecture which enables the proposed algorithm to be mapped effectively onto FPGA resources is then proposed to support real-time on-board classification with low power consumption. Implementation results show that our proposed accelerator on a Xilinx Zynq 706 FPGA board achieves more than 70x faster than an Intel 8-core Xeon CPU and 3x faster than an NVIDIA GeForce 1080 GPU. Compared to previous SVM-based FPGA accelerators, we achieve comparable processing speed but provide a much higher classification accuracy.
We conduct an in-depth exploration of different strategies for doing event detection in videos using convolutional neural networks (CNNs) trained for image classification. We study different ways of performing spatial and temporal pooling, feature no rmalization, choice of CNN layers as well as choice of classifiers. Making judicious choices along these dimensions led to a very significant increase in performance over more naive approaches that have been used till now. We evaluate our approach on the challenging TRECVID MED14 dataset with two popular CNN architectures pretrained on ImageNet. On this MED14 dataset, our methods, based entirely on image-trained CNN features, can outperform several state-of-the-art non-CNN models. Our proposed late fusion of CNN- and motion-based features can further increase the mean average precision (mAP) on MED14 from 34.95% to 38.74%. The fusion approach achieves the state-of-the-art classification performance on the challenging UCF-101 dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا