ﻻ يوجد ملخص باللغة العربية
This paper introduces DensePoint, a densely sampled and annotated point cloud dataset containing over 10,000 single objects across 16 categories, by merging different kind of information from two existing datasets. Each point cloud in DensePoint contains 40,000 points, and each point is associated with two sorts of information: RGB value and part annotation. In addition, we propose a method for point cloud colorization by utilizing Generative Adversarial Networks (GANs). The network makes it possible to generate colours for point clouds of single objects by only giving the point cloud itself. Experiments on DensePoint show that there exist clear boundaries in point clouds between different parts of an object, suggesting that the proposed network is able to generate reasonably good colours. Our dataset is publicly available on the project page.
Object grasping is critical for many applications, which is also a challenging computer vision problem. However, for the clustered scene, current researches suffer from the problems of insufficient training data and the lacking of evaluation benchmar
Point cloud processing is very challenging, as the diverse shapes formed by irregular points are often indistinguishable. A thorough grasp of the elusive shape requires sufficiently contextual semantic information, yet few works devote to this. Here
This paper addresses the problem of compression of 3D point cloud sequences that are characterized by moving 3D positions and color attributes. As temporally successive point cloud frames are similar, motion estimation is key to effective compression
Deep neural networks are found to be prone to adversarial examples which could deliberately fool the model to make mistakes. Recently, a few of works expand this task from 2D image to 3D point cloud by using global point cloud optimization. However,
Pseudo-LiDAR point cloud interpolation is a novel and challenging task in the field of autonomous driving, which aims to address the frequency mismatching problem between camera and LiDAR. Previous works represent the 3D spatial motion relationship i