ترغب بنشر مسار تعليمي؟ اضغط هنا

Galilean gauge theory from Poincare gauge theory

143   0   0.0 ( 0 )
 نشر من قبل Pradip Mukherjee
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide an exact mapping between the Galilian gauge theory, recently advocated by us cite{BMM1, BMM2, BM}, and the Poincare gauge theory. Applying this correspondence we provide a vielbein approach to the geometric formulation of Newtons gravity where no ansatze or additional conditions are required.



قيم البحث

اقرأ أيضاً

131 - Jose A. Zapata 2012
Within the discrete gauge theory which is the basis of spin foam models, the problem of macroscopically faithful coarse graining is studied. Macroscopic data is identified; it contains the holonomy evaluation along a discrete set of loops and the hom otopy classes of certain maps. When two configurations share this data they are related by a local deformation. The interpretation is that such configurations differ by microscopic details. In many cases the homotopy type of the relevant maps is trivial for every connection; two important cases in which the homotopy data is composed by a set of integer numbers are: (i) a two dimensional base manifold and structure group U(1), (ii) a four dimensional base manifold and structure group SU(2). These cases are relevant for spin foam models of two dimensional gravity and four dimensional gravity respectively. This result suggests that if spin foam models for two-dimensional and four-dimensional gravity are modified to include all the relevant macroscopic degrees of freedom -the complete collection of macroscopic variables necessary to ensure faithful coarse graining-, then they could provide appropriate effective theories at a given scale.
In four dimensions one can use the chiral part of the spin connection as the main object that encodes geometry. The metric is then recovered algebraically from the curvature of this connection. We address the question of how isometries can be identif ied in this pure connection formalism. We show that isometries are recovered from gauge transformation parameters satisfying the requirement that the Lie derivative of the connection along a vector field generating an isometry is a gauge transformation. This requirement can be rewritten as a first order differential equation involving the gauge transformation parameter only. Once a gauge transformation satisfying this equation is found, the isometry generating vector field is recovered algebraically. We work out examples of the new formalism being used to determine isometries, and also prove a general statement: a negative definite connection on a compact manifold does not have symmetries. This is the precise pure connection analog of the well-known Riemannian geometry statement that there are no Killing vector fields on compact manifolds with negative Ricci curvature.
101 - Frank Gronwald 1997
We give a self-contained introduction into the metric-affine gauge theory of gravity. Starting from the equivalence of reference frames, the prototype of a gauge theory is presented and illustrated by the example of Yang-Mills theory. Along the same lines we perform a gauging of the affine group and establish the geometry of metric-affine gravity. The results are put into the dynamical framework of a classical field theory. We derive subcases of metric-affine gravity by restricting the affine group to some of its subgroups. The important subcase of general relativity as a gauge theory of translations is explained in detail.
135 - Roman Sverdlov 2008
This is the second paper in a series on the dynamics of matter fields in the causal set approach to quantum gravity. We start with the usual expression for the Lagrangian of a charged scalar field coupled to a SU(n) Yang-Mills field, in which the gau ge field is represented by a connection form, and show how to write it in terms of holonomies between pairs of points, causal relations, and volumes or timelike distances, all of which have a natural correspondence in the causal set context. In the second part of the paper we present an alternative model, in which the gauge field appears as the result of a procedure inspired by the Kaluza-Klein reduction in continuum field theory, and the dynamics can be derived simply using the gravitational Lagrangian of the theory.
We discuss the gauge-Higgs unification in a framework of Lifshitz type gauge theory. We study a higher dimensional gauge theory on R^{D-1}times S^{1} in which the normal second (first) order derivative terms for scalar (fermion) fields in the action are replaced by higher order derivative ones for the direction of the extra dimension. We provide some mathematical tools to evaluate a one-loop effective potential for the zero mode of the extra component of a higher dimensional gauge field and clarify how the higher order derivative terms affect the standard form of the effective potential. Our results show that they can make the Higgs mass heavier and change its vacuum expectation value drastically. Some extensions of our framework are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا