ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge-Higgs Unification in Lifshitz Type Gauge Theory

207   0   0.0 ( 0 )
 نشر من قبل Hisaki Hatanaka
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the gauge-Higgs unification in a framework of Lifshitz type gauge theory. We study a higher dimensional gauge theory on R^{D-1}times S^{1} in which the normal second (first) order derivative terms for scalar (fermion) fields in the action are replaced by higher order derivative ones for the direction of the extra dimension. We provide some mathematical tools to evaluate a one-loop effective potential for the zero mode of the extra component of a higher dimensional gauge field and clarify how the higher order derivative terms affect the standard form of the effective potential. Our results show that they can make the Higgs mass heavier and change its vacuum expectation value drastically. Some extensions of our framework are briefly discussed.



قيم البحث

اقرأ أيضاً

Gauge-Higgs grand unification is formulated. By extending $SO(5) times U(1)_X$ gauge-Higgs electroweak unification, strong interactions are incorporated in $SO(11)$ gauge-Higgs unification in the Randall-Sundrum warped space. Quarks and leptons are c ontained in spinor and vector multiplets of $SO(11)$. Although the KK scale can be as low as $10 $ TeV, proton decay is forbidden by a conserved fermion number in the absence of Majorana masses of neutrinos.
Gauge-Higgs unification is the fascinating scenario solving the hierarchy problem without supersymmetry. In this scenario, the Standard Model (SM) Higgs doublet is identified with extra component of the gauge field in higher dimensions and its mass b ecomes finite and stable under quantum corrections due to the higher dimensional gauge symmetry. On the other hand, Yukawa coupling is provided by the gauge coupling, which seems to mean that the flavor mixing and CP violation do not arise at it stands. In this talk, we discuss that the flavor mixing is originated from simultaneously non-diagonalizable bulk and brane mass matrices. Then, this mechanism is applied to various flavor changing neutral current (FCNC) processes via Kaluza-Klein (KK) gauge boson exchange at tree level and constraints for compactification scale are obtained.
306 - Yutaka Hosotani 2012
When the extra dimensional space is not simply-connected, dynamics of the AB phase in the extra dimension can induce dynamical gauge symmetry breaking by the Hosotani mechanism. This opens up a new way of achieving unification of gauge forces. It lea ds to the gauge-Higgs unification. The Hosotani mechanism can be established nonperturbatively by lattice simulations, in which measurements of the Polyakov line give a clue.
We propose gauge-Higgs unification in fuzzy extra dimensions as a possible solution to the Higgs naturalness problem. In our approach, the fuzzy extra dimensions are created spontaneously as a vacuum solution of certain four-dimensional gauge theory. As an example, we construct a model which has a fuzzy torus as its vacuum. The Higgs field in our model is associated with the Wilson loop wrapped on the fuzzy torus. We show that the quadratic divergence in the mass of the Higgs field in the one-loop effective potential is absent. We then argue based on symmetries that the quantum corrections to the Higgs mass is suppressed including all loop contributions. We also consider a realization on the worldvolume theory of D3-branes probing $C^3/(Z_N times Z_N)$ orbifold with discrete torsion.
$SO(11)$ gauge-Higgs grand unification is formulated in the six-dimensional hybrid warped space in which the fifth and sixth dimensions play as the electroweak and grand-unification dimensions. Fermions are introduced in ${bf 32}$, ${bf 11}$ and ${bf 1}$ of $SO(11)$. Small neutrino masses naturally emerge as a result of a new seesaw mechanism in the gauge-Higgs unification which is characterized by a $3 times 3$ mass matrix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا