ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport measurements on van der Waals heterostructures under pressure

312   0   0.0 ( 0 )
 نشر من قبل B\\'alint F\\\"ul\\\"op
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interlayer coupling, which has a strong influence on the properties of van der Waals heterostructures, strongly depends on the interlayer distance. Although considerable theoretical interest has been demonstrated, experiments exploiting a variable interlayer coupling on nanocircuits are scarce due to the experimental difficulties. Here, we demonstrate a novel method to tune the interlayer coupling using hydrostatic pressure by incorporating van der Waals heterostructure based nanocircuits in piston-cylinder hydrostatic pressure cells with a dedicated sample holder design. This technique opens the way to conduct transport measurements on nanodevices under pressure using up to 12 contacts without constraints on the sample at fabrication level. Using transport measurements, we demonstrate that hexagonal boron nitride capping layer provides a good protection of van der Waals heterostructures from the influence of the pressure medium, and we show experimental evidence of the influence of pressure on the interlayer coupling using weak localization measurements on a TMDC/graphene heterostructure.



قيم البحث

اقرأ أيضاً

In van der Waals (vdW) heterostructures formed by stacking two monolayer semiconductors, lattice mismatch or rotational misalignment introduces an in-plane moire superlattice. While it is widely recognized that a moire superlattice can modulate the e lectronic band structure and lead to novel transport properties including unconventional superconductivity and insulating behavior driven by correlations, its influence on optical properties has not been investigated experimentally. We present spectroscopic evidence that interlayer excitons are confined by the moire potential in a high-quality MoSe2/WSe2 heterobilayer with small rotational twist. A series of interlayer exciton resonances with either positive or negative circularly polarized emission is observed in photoluminescence, consistent with multiple exciton states confined within the moire potential. The recombination dynamics and temperature dependence of these interlayer exciton resonances are consistent with this interpretation. These results demonstrate the feasibility of engineering artificial excitonic crystals using vdW heterostructures for nanophotonics and quantum information applications.
Spin-orbit coupling stands as a powerful tool to interconvert charge and spin currents and to manipulate the magnetization of magnetic materials through the spin torque phenomena. However, despite the diversity of existing bulk materials and the rece nt advent of interfacial and low-dimensional effects, control of the interconvertion at room-temperature remains elusive. Here, we unequivocally demonstrate strongly enhanced room-temperature spin-to-charge (StC) conversion in graphene driven by the proximity of a semiconducting transition metal dichalcogenide(WS2). By performing spin precession experiments in properly designed Hall bars, we separate the contributions of the spin Hall and the spin galvanic effects. Remarkably, their corresponding conversion effiencies can be tailored by electrostatic gating in magnitude and sign, peaking nearby the charge neutrality point with a magnitude that is comparable to the largest efficiencies reported to date. Such an unprecedented electric-field tunability provides a new building block for spin generation free from magnetic materials and for ultra-compact magnetic memory technologies.
89 - V. Ryzhii , M. Ryzhii , V. Leiman 2017
We study the operation of infrared photodetectors based on van der Waals heterostructures with the multiple graphene layers (GLs) and n-type emitter and collector contacts. The operation of such GL infrared photodetectors (GLIPs) is associated with t he photoassisted escape of electrons from the GLs into the continuum states in the conduction band of the barrier layers due to the interband photon absorption, the propagation of these electrons and the electrons injected from the emitter across the heterostructure and their collection by the collector contact. The space charge of the holes trapped in the GLs provides a relatively strong injection and large photoelectric gain. We calculate the GLIP responsivity and dark current detectivity as functions of the energy of incident infrared photons and the structural parameters. It is shown that both the periodic selective doping of the inter-GL barrier layers and the GL doping lead to a pronounced variation of the GLIP spectral characteristics, particularly near the interband absorption threshold, while the doping of GLs solely results in a substantial increase in the GLIP detectivity. The doping engineering opens wide opportunities for the optimization of GLIPs for operation in different parts of radiation spectrum from near infrared to terahertz.
Wetting behaviour of surfaces is believed to be affected by van der Waals (vdW) forces, however, there is no clear demonstration of this. With the isolation of two-dimensional vdW layered materials it is possible to test this hypothesis. In this pape r, we report the wetting behaviour of vdW heterostructures which include, chemical vapor deposition (CVD) grown graphene, molybdenum disulfide (MoS2) and tungsten disulfide (WS2) on few layers of hexagon boron nitride (h-BN) and SiO2/Si. Our study clearly shows that while this class of two-dimensional materials are not wetting transparent, there seems to be a significant amount of influence on their wetting properties by the underlying substrate due to dominant vdW forces. Contact angle measurements indicate that graphene and graphene-like layered transitional metal dichalcogenides invariably have intrinsically dispersive surfaces with a dominating London-vdW force-mediated wettability. Electric field controlled wetting studies of MoS2/WS2/SiO2/Si heterostructures were performed and no notable changes to the water contact angle was seen with applied voltage although two orders of magnitude change in resistance was observed. We postulate that the highly dispersive nature of these surfaces arising from the predominant London-vdW forces could be the reason for such observation.
Graphene constitutes one of the key elements in many functional van der Waals heterostructures. However, it has negligible optical visibility due to its monolayer nature. Here we study the visibility of graphene in various van der Waals heterostructu res and include the effects of the source spectrum, oblique incidence and the spectral sensitivity of the detector to obtain a realistic model. A visibility experiment is performed at different wavelengths, resulting in a very good agreement with our calculations. This allows us to reliably predict the conditions for better visibility of graphene in van der Waals heterostructures. The framework and the codes provided in this work can be extended to study the visibility of any 2D material within an arbitrary van der Waals heterostructure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا