ﻻ يوجد ملخص باللغة العربية
Populations of massive stars are directly reflective of the physics of stellar evolution. Counting subtypes of massive stars and ratios of massive stars in different evolutionary states have been used ubiquitously as diagnostics of age and metallicity effects. While the binary fraction of massive stars is significant, inferences are often based upon models incorporating only single-star evolution. In this work, we utilize custom synthetic stellar populations from the Binary Population and Stellar Synthesis (BPASS) code to determine the effect of stellar binaries on number count ratios of different evolutionary stages in both young massive clusters and galaxies with massive stellar populations. We find that many ratios are degenerate in metallicity, age, and/or binary fraction. We develop diagnostic plots using these stellar count ratios to help break this degeneracy, and use these plots to compare our predictions to observed data in the Milky Way and the Local Group. These data suggest a possible correlation between the massive star binary fraction and metallicity. We also examine the robustness of our predictions in samples with varying levels of completeness. We find including binaries and imposing a completeness limit can both introduce $gtrsim0.1$ dex changes in inferred ages. Our results highlight the impact that binary evolution channels can have on the massive star population.
The ESO public survey VISTA Variables in the Via Lactea (VVV) has contributed with deep multi-epoch photometry of the Galactic bulge and the adjacent part of the disk over 526 square degrees. More than a hundred cluster candidates have been reported
We analyzed the massive star population of the Virgo Cluster galaxy NGC 4535 using archival Hubble Space Telescope Wide Field Planetary Camera 2 images in filters F555W and F814W, equivalent to Johnson V and Kron-Cousins I. We performed high precisio
The binary fraction of a stellar population can have pronounced effects on its properties, and in particular the number counts of different massive star types, and the relative subtype rates of the supernovae which end their lives. Here we use binary
We use the Binary Population and Spectral Synthesis (BPASS) models to test the recent suggestion that red supergiants can provide an accurate age estimate of a co-eval stellar population that is unaffected by interacting binary stars. Ages are estima
Stellar kinematics provides the key to understanding the formation process and dynamical evolution of stellar systems. Here, we present a kinematic study of the massive star-forming region W4 in the Cassiopeia OB6 association using the Gaia Data Rele