ﻻ يوجد ملخص باللغة العربية
Stellar kinematics provides the key to understanding the formation process and dynamical evolution of stellar systems. Here, we present a kinematic study of the massive star-forming region W4 in the Cassiopeia OB6 association using the Gaia Data Release 2 and high-resolution optical spectra. This star-forming region is composed of a core cluster (IC 1805) and a stellar population distributed over 20 pc, which is a typical structural feature found in many OB associations. According to a classical model, this structural feature can be understood in the context of the dynamical evolution of a star cluster. The core-extended structure exhibits internally different kinematic properties. Stars in the core have an almost isotropic motion, and they appear to reach virial equilibrium given their velocity dispersion (0.9 +/- 0.3 km/s) comparable to that in a virial state (~0.8 km/s). On the other hand, the distributed population shows a clear pattern of radial expansion. From the N-body simulation for the dynamical evolution of a model cluster in subvirial state, we reproduce the observed structure and kinematics of stars. This model cluster experiences collapse for the first 2 Myr. Some members begin to radially escape from the cluster after the initial collapse, eventually forming a distributed population. The internal structure and kinematics of the model cluster appear similar to those of W4. Our results support the idea that the stellar population distributed over 20 pc in W4 originate from the dynamical evolution of IC 1805.
We present a multi-wavelength study of the young stellar population in the Cygnus-X DR15 region. We studied young stars forming or recently formed at and around the tip of a prominent molecular pillar and an infrared dark cloud. Using a combination o
We present Spitzer IRAC and MIPS observations of the star-forming region containing intermediate-mass young stellar object (YSO) AFGL 490. We supplement these data with near-IR 2MASS photometry and with deep SQIID observations off the central high ex
Populations of massive stars are directly reflective of the physics of stellar evolution. Counting subtypes of massive stars and ratios of massive stars in different evolutionary states have been used ubiquitously as diagnostics of age and metallicit
We present results from a near-infrared (NIR) adaptive optics (AO) survey of pre-main-sequence stars in the Lupus Molecular Cloud with VLT/NACO to identify (sub)stellar companions down to $sim$20 au separation and investigate the effects of multiplic
We observed a field of $16times 16$ in the star-forming region Pelican Nebula (IC 5070) at $BVRI$ wavelengths for 90 nights spread over one year in 2012-2013. More than 250 epochs in $VRI$-bands are used to identify and classify variables up to $Vsim