ﻻ يوجد ملخص باللغة العربية
We have systematically studied the evolution of magnetic properties, especially the coercivity and the remanence ratio in the vicinity of the Verwey transition temperature (TV ), of high-quality epitaxial Fe3O4 thin films grown on MgO (001), MgAl2O4 (MAO) (001), and SrTiO3 (STO) (001) substrates. We observed rapid change of magnetization, coercivity, and remanence ratio at TV , which are consistent with the behaviors of resistivity versus temperature [r{ho}(T )] curves for the different thin films. In particular, we found quite different magnetic behaviors for the thin films onMgOfrom those onMAOand STO, inwhich the domain size and the strain state play very important roles. The coercivity is mainly determined by the domain size but the demagnetization process is mainly dependent on the strain state. Furthermore, we observed a reversal of remanence ratio at TV with thickness for the thin films grown on MgO: from a rapid enhancement for 40-nm- to a sharp drop for 200-nm-thick film, and the critical thickness is about 80 nm. Finally, we found an obvious hysteretic loop of coercivity (or remanence ratio) with temperature around TV , corresponding to the hysteretic loop of the r{ho}(T ) curve, in Fe3O4 thin film grown on MgO.
We report a direct observation of magnetic domain evolution near the Verwey transition (TV) in Fe3O4 films. We found the stripe domains in the Fe3O4/Mg2TiO4 film while the irregular domains in the Fe3O4/MgO film and the similar characters of magnetic
We have investigated the magnetic damping of precessional spin dynamics in defect-controlled epitaxial grown Fe$_3$O$_4$(111)/Yttria-stabilized Zirconia (YSZ) nanoscale films by all-optical pump-probe measurements. The intrinsic damping constant of t
We report the tunability of the exchange bias effect by the first-order metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5 nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey transition, the exchange bias
The magnetic and structural properties of highly ordered (S ~ 0.82) epitaxial Fe50-xMnxPt50 thin films were investigated. We report the change in the magnetic properties of Mn doped FePt epitaxial thin films. This study differs from the earlier exper
Epitaxial La0.7Sr0.3MnO3 (LSMO) thin films, with different thickness ranging from 20 nm up to 330 nm, were deposited on (100)-oriented strontium titanate (STO) substrates by pulsed laser deposition, and their structure and morphology characterized at