ترغب بنشر مسار تعليمي؟ اضغط هنا

Unravelling the effect of SrTiO3 antiferrodistortive phase transition on the magnetic properties of La0.7Sr0.3MnO3 thin films

139   0   0.0 ( 0 )
 نشر من قبل Joaquim Agostinho Moreira
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epitaxial La0.7Sr0.3MnO3 (LSMO) thin films, with different thickness ranging from 20 nm up to 330 nm, were deposited on (100)-oriented strontium titanate (STO) substrates by pulsed laser deposition, and their structure and morphology characterized at room temperature. Magnetic and electric transport properties of the as-processed thin films reveal an abnormal behavior in the temperature dependent magnetization M(T) below the antiferrodistortive STO phase transition (TSTO) and also an anomaly in the magnetoresistance and electrical resistivity close to the same temperature. Up to 100 nm LSMO thin films, an in-excess magnetization and pronounced changes in the coercivity are evidenced, achieved through the interface-mediated magnetoelastic coupling with antiferrodistortive domain wall movement occurring below TSTO. Contrarily, for thicker LSMO thin films, above 100 nm, an in-defect magnetization is observed. This reversed behavior can be understood within the emergence in the upper layer of the film, observed by high resolution transmission electron microscopy, of a branched structure needed to relax elastic energy stored in the film which leads to randomly oriented magnetic domain reconstructions. For enough high-applied magnetic fields, as thermodynamic equilibrium is reached, a fully suppression of the anomalous magnetization occurs, wherein the temperature dependence of the magnetization starts to follow the expected Brillouin behavior.



قيم البحث

اقرأ أيضاً

The effects of Cu-doping on the structural, magnetic, and transport properties of La0.7Sr0.3Mn1-xCuxO3 (0 < x < 0.20) have been studied using neutron diffraction, magnetization and magnetoresistance (MR) measurements. All samples show the rhombohedra l structure with the R3c space-group from 10K to room temperature (RT). Neutron diffraction data suggest that some of the Cu ions have a Cu3+ state in these compounds. The substitution of Mn by Cu affects the Mn-O bond length and Mn-O-Mn bond angle resulting from the minimization of the distortion of the MnO6 octahedron. Resistivity measurements show that a metal to insulator transition occurs for the x more than 0.15 samples. The x = 0.15 sample shows the highest MR(_80%), which might result from the co-existence of Cu3+/Cu2+ and the dilution effect of Cu-doping on the double exchange interaction.
We report on the magnetic properties of zinc ferrite thin film deposited on SrTiO$_3$ single crystal using pulsed laser deposition. X-ray diffraction result indicates the highly oriented single phase growth of the film along with the presence of the strain. In comparison to the bulk antiferromagnetic order, the as-deposited film has been found to exhibit ferrimagnetic ordering with a coercive field of 1140~Oe at 5~K. A broad maximum, at $approx$105~K, observed in zero-field cooled magnetization curve indicates the wide grain size distribution for the as-deposited film. Reduction in magnetization and blocking temperature has been observed after annealing in both argon as well as oxygen atmospheres, where the variation was found to be dependent on the annealing temperature.
The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented SrTiO3 substrates. Phase-pure films with optimum crystallographic and magnetic properties were obtained by growing at a substrate temperature of 700 degree C in pure O2 of 6.6x10-4 mbar. The films are c-axis oriented, coherently strained, and show less than 20% anti-site defects. The magnetization curves reveal high saturation magnetization of 0.8 muB per formula unit and high coercivity of 1.1 T, as well as a strong magnetic anisotropy.
201 - H. Bea , M. Bibes , A. Barthelemy 2005
We have explored the influence of deposition pressure and temperature on the growth of BiFeO3 thin films by pulsed laser deposition onto (001)-oriented SrTiO3 substrates. Single-phase BiFeO3 films are obtained in a region close to 10-2 mbar and 580C. In non-optimal conditions, X-ray diffraction reveals the presence of Fe oxides or of Bi2O3. We address the influence of these parasitic phases on the magnetic and electrical properties of the films and show that films with Fe2O3 systematically exhibit a ferromagnetic behaviour, while single-phase films have a low bulk-like magnetic moment. Conductive-tip atomic force microscopy mappings also indicate that Bi2O3 conductive outgrowths create shortcuts through the BiFeO3 films, thus preventing their practical use as ferroelectric elements in functional heterostructures.
The rate and pathways of relaxation of a magnetic medium to its equilibrium following excitation with intense and short laser pulses are the key ingredients of ultrafast optical control of spins. Here we study experimentally the evolution of the magn etization and magnetic anisotropy of thin films of a ferromagnetic metal galfenol (Fe$_{0.81}$Ga$_{0.19}$) resulting from excitation with a femtosecond laser pulse. From the temporal evolution of the hysteresis loops we deduce that the magnetization $M_S$ and magnetic anisotropy parameters $K$ recover within a nanosecond, and the ratio between $K$ and $M_S$ satisfies the thermal equilibriums power law in the whole time range spanning from a few picoseconds to 3 nanoseconds. We further use the experimentally obtained relaxation times of $M_S$ and $K$ to analyze the laser-induced precession and demonstrate how they contribute to its frequency evolution at the nanosecond timescale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا