ﻻ يوجد ملخص باللغة العربية
We review some recent trends in the inflationary model building, the supersymmetry (SUSY) breaking, the gravitino Dark Matter (DM) and the Primordial Black Holes (PBHs) production in supergravity. The Starobinsky inflation can be embedded into supergravity when the inflaton belongs to the massive vector multiplet associated with a (spontaneously broken) $U(1)$ gauge symmetry. The SUSY and R-symmetry can be also spontaneously broken after inflation by the (standard) Polonyi mechanism. Polonyi particles and gravitinos are super heavy and can be copiously produced during inflation via the Schwinger mechanism sourced by the Universe expansion. The overproduction and instability problems can be avoided, and the positive cosmological constant (dark energy) can also be introduced. The observed abundance of the Cold Dark Matter (CDM) composed of gravitinos can be achieved in our supergravity model too, thus providing the unifying framework for inflation, supersymmetry breaking, dark energy and dark matter genesis. Our supergravity approach may also lead to a formation of primordial non-linear structures like stellar-mass-type black holes, and may include the SUSY GUTs inspired by heterotic string compactifications, unifying particle physics with quantum gravity.
The $R^2$ term in the Starobinsky inflationary model can be regarded as a leading quantum correction to the gravitational effective action. We assume that parity-preserving and parity-violating (axial) non-minimal couplings between curvature and elec
The minimal Starobinsky supergravity with the inflaton (scalaron) and the goldstino in a massive vector supermultiplet is coupled to the dilaton-axion chiral superfield with the no-scale Kahler potential and a superpotential. The Kachru-Kallosh-Linde
The first inflationary model conceived was the one proposed by Starobinsky which includes an additional term quadratic in the Ricci-scalar R in the Einstein-Hilbert action. The model is now considered a target for several future cosmic microwave back
Some recently proposed definitions of Jackiw-Teitelboim gravity and supergravities in terms of combinations of minimal string models are explored, with a focus on physics beyond the perturbative expansion in spacetime topology. While this formally in
Aspects of the low energy physics of certain Jackiw-Teitelboim gravity and supergravity theories are explored, using their recently presented non-perturbative description in terms of minimal string models. This regime necessarily involves non-perturb