ﻻ يوجد ملخص باللغة العربية
The first inflationary model conceived was the one proposed by Starobinsky which includes an additional term quadratic in the Ricci-scalar R in the Einstein-Hilbert action. The model is now considered a target for several future cosmic microwave background experiments given its compatibility with current observational data. In this paper, we analyse the robustness of the Starobinsky inflation by inserting it into a generalized scenario based on a $beta$-Starobinsky inflation potential, which is motivated through brane inflation. In the Einstein frame, the generalized model recovers the original model for $beta=0$, whereas $forall beta eq 0$ represents an extended class of models that admit a wider range of solutions. We investigate limits on $beta$ from current cosmic microwave background and baryonic acoustic oscillation data and find that only a small deviation from the original scenario is allowed, $beta=-0.08 pm 0.12$ (68% C.L.), which is fully compatible with zero and confirms the robustness of the Starobinsky inflationary model in light of current observations.
The $R^2$ term in the Starobinsky inflationary model can be regarded as a leading quantum correction to the gravitational effective action. We assume that parity-preserving and parity-violating (axial) non-minimal couplings between curvature and elec
We review some recent trends in the inflationary model building, the supersymmetry (SUSY) breaking, the gravitino Dark Matter (DM) and the Primordial Black Holes (PBHs) production in supergravity. The Starobinsky inflation can be embedded into superg
In this work we study the scalar power spectrum and the spectral index for the Starobinsky inflationary model using the phase integral method up-to third-order of approximation. We show that the semiclassical methods reproduce the scalar power spectr
In this work we study numerically one kind of generalization of the Starobinsky inflationary model (power-law type), which is characterized by the parameter $p$. In order to find the parameter $p$ that fixes with observations, we compute the cosmolog
In a logamediate inflationary universe model we introduce the curvaton field in order to bring this inflationary model to an end. In this approach we determine the reheating temperature. We also outline some interesting constraints on the parameters