ﻻ يوجد ملخص باللغة العربية
Tensor network states provide successful descriptions of strongly correlated quantum systems with applications ranging from condensed matter physics to cosmology. Any family of tensor network states possesses an underlying entanglement structure given by a graph of maximally entangled states along the edges that identify the indices of the tensors to be contracted. Recently, more general tensor networks have been considered, where the maximally entangled states on edges are replaced by multipartite entangled states on plaquettes. Both the structure of the underlying graph and the dimensionality of the entangled states influence the computational cost of contracting these networks. Using the geometrical properties of entangled states, we provide a method to construct tensor network representations with smaller effective bond dimension. We illustrate our method with the resonating valence bond state on the kagome lattice.
The states of three-qubit systems split into two inequivalent types of genuine tripartite entanglement, namely the Greenberger-Horne-Zeilinger (GHZ) type and the $W$ type. A state belonging to one of these classes can be stochastically transformed on
The familiar Greenberger-Horne-Zeilinger (GHZ) states can be rewritten by entangling the Bell states for two qubits with a state of the third qubit, which is dubbed entangled entanglement. We show that in this way we obtain all 8 independent GHZ stat
I generalize the concept of balancedness to qudits with arbitrary dimension $d$. It is an extension of the concept of balancedness in New J. Phys. {bf 12}, 075025 (2010) [1]. At first, I define maximally entangled states as being the stochastic state
We investigate the tensor network representations of fermionic crystalline symmetry-protected topological (SPT) phases on two-dimensional lattices. As a mapping from virtual indices to physical indices, projected entangled-pair state (PEPS) serves as
We study the distinguishability of a particular type of maximally entangled states -- the lattice states using a new approach of semidefinite program. With this, we successfully construct all sets of four ququad-ququad orthogonal maximally entangled