ترغب بنشر مسار تعليمي؟ اضغط هنا

Bootstrapping Transliteration with Constrained Discovery for Low-Resource Languages

85   0   0.0 ( 0 )
 نشر من قبل Shyam Upadhyay
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generating the English transliteration of a name written in a foreign script is an important and challenging step in multilingual knowledge acquisition and information extraction. Existing approaches to transliteration generation require a large (>5000) number of training examples. This difficulty contrasts with transliteration discovery, a somewhat easier task that involves picking a plausible transliteration from a given list. In this work, we present a bootstrapping algorithm that uses constrained discovery to improve generation, and can be used with as few as 500 training examples, which we show can be sourced from annotators in a matter of hours. This opens the task to languages for which large number of training examples are unavailable. We evaluate transliteration generation performance itself, as well the improvement it brings to cross-lingual candidate generation for entity linking, a typical downstream task. We present a comprehensive evaluation of our approach on nine languages, each written in a unique script.



قيم البحث

اقرأ أيضاً

78 - Zhong Zhou , Alex Waibel 2021
We translate a closed text that is known in advance and available in many languages into a new and severely low resource language. Most human translation efforts adopt a portion-based approach to translate consecutive pages/chapters in order, which m ay not suit machine translation. We compare the portion-based approach that optimizes coherence of the text locally with the random sampling approach that increases coverage of the text globally. Our results show that the random sampling approach performs better. When training on a seed corpus of ~1,000 lines from the Bible and testing on the rest of the Bible (~30,000 lines), random sampling gives a performance gain of +11.0 BLEU using English as a simulated low resource language, and +4.9 BLEU using Eastern Pokomchi, a Mayan language. Furthermore, we compare three ways of updating machine translation models with increasing amount of human post-edited data through iterations. We find that adding newly post-edited data to training after vocabulary update without self-supervision performs the best. We propose an algorithm for human and machine to work together seamlessly to translate a closed text into a severely low resource language.
While low resource speech recognition has attracted a lot of attention from the speech community, there are a few tools available to facilitate low resource speech collection. In this work, we present SANTLR: Speech Annotation Toolkit for Low Resourc e Languages. It is a web-based toolkit which allows researchers to easily collect and annotate a corpus of speech in a low resource language. Annotators may use this toolkit for two purposes: transcription or recording. In transcription, annotators would transcribe audio files provided by the researchers; in recording, annotators would record their voice by reading provided texts. We highlight two properties of this toolkit. First, SANTLR has a very user-friendly User Interface (UI). Both researchers and annotators may use this simple web interface to interact. There is no requirement for the annotators to have any expertise in audio or text processing. The toolkit would handle all preprocessing and postprocessing steps. Second, we employ a multi-step ranking mechanism facilitate the annotation process. In particular, the toolkit would give higher priority to utterances which are easier to annotate and are more beneficial to achieving the goal of the annotation, e.g. quickly training an acoustic model.
Parsers are available for only a handful of the worlds languages, since they require lots of training data. How far can we get with just a small amount of training data? We systematically compare a set of simple strategies for improving low-resource parsers: data augmentation, which has not been tested before; cross-lingual training; and transliteration. Experimenting on three typologically diverse low-resource languages---North Sami, Galician, and Kazah---We find that (1) when only the low-resource treebank is available, data augmentation is very helpful; (2) when a related high-resource treebank is available, cross-lingual training is helpful and complements data augmentation; and (3) when the high-resource treebank uses a different writing system, transliteration into a shared orthographic spaces is also very helpful.
Recently, there is increasing interest in multilingual automatic speech recognition (ASR) where a speech recognition system caters to multiple low resource languages by taking advantage of low amounts of labeled corpora in multiple languages. With mu ltilingualism becoming common in todays world, there has been increasing interest in code-switching ASR as well. In code-switching, multiple languages are freely interchanged within a single sentence or between sentences. The success of low-resource multilingual and code-switching ASR often depends on the variety of languages in terms of their acoustics, linguistic characteristics as well as the amount of data available and how these are carefully considered in building the ASR system. In this challenge, we would like to focus on building multilingual and code-switching ASR systems through two different subtasks related to a total of seven Indian languages, namely Hindi, Marathi, Odia, Tamil, Telugu, Gujarati and Bengali. For this purpose, we provide a total of ~600 hours of transcribed speech data, comprising train and test sets, in these languages including two code-switched language pairs, Hindi-English and Bengali-English. We also provide a baseline recipe for both the tasks with a WER of 30.73% and 32.45% on the test sets of multilingual and code-switching subtasks, respectively.
Spoken Term Detection (STD) is the task of searching for words or phrases within audio, given either text or spoken input as a query. In this work, we use state-of-the-art Hindi, Tamil and Telugu ASR systems cross-lingually for lexical Spoken Term De tection in ten low-resource Indian languages. Since no publicly available dataset exists for Spoken Term Detection in these languages, we create a new dataset using a publicly available TTS dataset. We report a standard metric for STD, Mean Term Weighted Value (MTWV) and show that ASR systems built in languages that are phonetically similar to the target languages have higher accuracy, however, it is also possible to get high MTWV scores for dissimilar languages by using a relaxed phone matching algorithm. We propose a technique to bootstrap the Grapheme-to-Phoneme (g2p) mapping between all the languages under consideration using publicly available resources. Gains are obtained when we combine the output of multiple ASR systems and when we use language-specific Language Models. We show that it is possible to perform STD cross-lingually in a zero-shot manner without the need for any language-specific speech data. We plan to make the STD dataset available for other researchers interested in cross-lingual STD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا