ترغب بنشر مسار تعليمي؟ اضغط هنا

Multilingual and code-switching ASR challenges for low resource Indian languages

186   0   0.0 ( 0 )
 نشر من قبل Chiranjeevi Yarra Dr.
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, there is increasing interest in multilingual automatic speech recognition (ASR) where a speech recognition system caters to multiple low resource languages by taking advantage of low amounts of labeled corpora in multiple languages. With multilingualism becoming common in todays world, there has been increasing interest in code-switching ASR as well. In code-switching, multiple languages are freely interchanged within a single sentence or between sentences. The success of low-resource multilingual and code-switching ASR often depends on the variety of languages in terms of their acoustics, linguistic characteristics as well as the amount of data available and how these are carefully considered in building the ASR system. In this challenge, we would like to focus on building multilingual and code-switching ASR systems through two different subtasks related to a total of seven Indian languages, namely Hindi, Marathi, Odia, Tamil, Telugu, Gujarati and Bengali. For this purpose, we provide a total of ~600 hours of transcribed speech data, comprising train and test sets, in these languages including two code-switched language pairs, Hindi-English and Bengali-English. We also provide a baseline recipe for both the tasks with a WER of 30.73% and 32.45% on the test sets of multilingual and code-switching subtasks, respectively.



قيم البحث

اقرأ أيضاً

Spoken Term Detection (STD) is the task of searching for words or phrases within audio, given either text or spoken input as a query. In this work, we use state-of-the-art Hindi, Tamil and Telugu ASR systems cross-lingually for lexical Spoken Term De tection in ten low-resource Indian languages. Since no publicly available dataset exists for Spoken Term Detection in these languages, we create a new dataset using a publicly available TTS dataset. We report a standard metric for STD, Mean Term Weighted Value (MTWV) and show that ASR systems built in languages that are phonetically similar to the target languages have higher accuracy, however, it is also possible to get high MTWV scores for dissimilar languages by using a relaxed phone matching algorithm. We propose a technique to bootstrap the Grapheme-to-Phoneme (g2p) mapping between all the languages under consideration using publicly available resources. Gains are obtained when we combine the output of multiple ASR systems and when we use language-specific Language Models. We show that it is possible to perform STD cross-lingually in a zero-shot manner without the need for any language-specific speech data. We plan to make the STD dataset available for other researchers interested in cross-lingual STD.
Despite the significant progress in end-to-end (E2E) automatic speech recognition (ASR), E2E ASR for low resourced code-switching (CS) speech has not been well studied. In this work, we describe an E2E ASR pipeline for the recognition of CS speech in which a low-resourced language is mixed with a high resourced language. Low-resourcedness in acoustic data hinders the performance of E2E ASR systems more severely than the conventional ASR systems.~To mitigate this problem in the transcription of archives with code-switching Frisian-Dutch speech, we integrate a designated decoding scheme and perform rescoring with neural network-based language models to enable better utilization of the available textual resources. We first incorporate a multi-graph decoding approach which creates parallel search spaces for each monolingual and mixed recognition tasks to maximize the utilization of the textual resources from each language. Further, language model rescoring is performed using a recurrent neural network pre-trained with cross-lingual embedding and further adapted with the limited amount of in-domain CS text. The ASR experiments demonstrate the effectiveness of the described techniques in improving the recognition performance of an E2E CS ASR system in a low-resourced scenario.
We present our first efforts towards building a single multilingual automatic speech recognition (ASR) system that can process code-switching (CS) speech in five languages spoken within the same population. This contrasts with related prior work whic h focuses on the recognition of CS speech in bilingual scenarios. Recently, we have compiled a small five-language corpus of South African soap opera speech which contains examples of CS between 5 languages occurring in various contexts such as using English as the matrix language and switching to other indigenous languages. The ASR system presented in this work is trained on 4 corpora containing English-isiZulu, English-isiXhosa, English-Setswana and English-Sesotho CS speech. The interpolation of multiple language models trained on these language pairs enables the ASR system to hypothesize mixed word sequences from these 5 languages. We evaluate various state-of-the-art acoustic models trained on this 5-lingual training data and report ASR accuracy and language recognition performance on the development and test sets of the South African multilingual soap opera corpus.
Acoustic word embeddings (AWEs) are fixed-dimensional representations of variable-length speech segments. For zero-resource languages where labelled data is not available, one AWE approach is to use unsupervised autoencoder-based recurrent models. An other recent approach is to use multilingual transfer: a supervised AWE model is trained on several well-resourced languages and then applied to an unseen zero-resource language. We consider how a recent contrastive learning loss can be used in both the purely unsupervised and multilingual transfer settings. Firstly, we show that terms from an unsupervised term discovery system can be used for contrastive self-supervision, resulting in improvements over previous unsupervised monolingual AWE models. Secondly, we consider how multilingual AWE models can be adapted to a specific zero-resource language using discovered terms. We find that self-supervised contrastive adaptation outperforms adapted multilingual correspondence autoencoder and Siamese AWE models, giving the best overall results in a word discrimination task on six zero-resource languages.
We consider multilingual bottleneck features (BNFs) for nearly zero-resource keyword spotting. This forms part of a United Nations effort using keyword spotting to support humanitarian relief programmes in parts of Africa where languages are severely under-resourced. We use 1920 isolated keywords (40 types, 34 minutes) as exemplars for dynamic time warping (DTW) template matching, which is performed on a much larger body of untranscribed speech. These DTW costs are used as targets for a convolutional neural network (CNN) keyword spotter, giving a much faster system than direct DTW. Here we consider how available data from well-resourced languages can improve this CNN-DTW approach. We show that multilingual BNFs trained on ten languages improve the area under the ROC curve of a CNN-DTW system by 10.9% absolute relative to the MFCC baseline. By combining low-resource DTW-based supervision with information from well-resourced languages, CNN-DTW is a competitive option for low-resource keyword spotting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا