ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for exact local Hamiltonians for general fractional quantum Hall states

392   0   0.0 ( 0 )
 نشر من قبل G J Sreejith
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on our systematic attempts at finding local interactions for which the lowest-Landau-level projected composite-fermion wave functions are the unique zero energy ground states. For this purpose, we study in detail the simplest non-trivial system beyond the Laughlin states, namely bosons at filling $ u=frac{2}{3}$ and identify local constraints among clusters of particles in the ground state. By explicit calculation, we show that no Hamiltonian up to (and including) four particle interactions produces this state as the exact ground state, and speculate that this remains true even when interaction terms involving greater number of particles are included. Surprisingly, we can identify an interaction, which imposes an energetic penalty for a specific entangled configuration of four particles with relative angular momentum of $6hbar$, that produces a unique zero energy solution (as we have confirmed for up to 12 particles). This state, referred to as the $lambda$-state, is not identical to the projected composite-fermion state, but the following facts suggest that the two might be topologically equivalent: the two sates have a high overlap; they have the same root partition; the quantum numbers for their neutral excitations are identical; and the quantum numbers for the quasiparticle excitations also match. On the quasihole side, we find that even though the quantum numbers of the lowest energy states agree with the prediction from the composite-fermion theory, these states are not separated from the others by a clearly identifiable gap. This prevents us from making a conclusive claim regarding the topological equivalence of the $lambda$ state and the composite-fermion state. Our study illustrates how new candidate states can be identified from constraining selected many particle configurations and it would be interesting to pursue their topological classification.



قيم البحث

اقرأ أيضاً

We prove that neither Integer nor Fractional Quantum Hall Effects with nonzero Hall conductivity are possible in gapped systems described by Local Commuting Projector Hamiltonians.
111 - Zhaoyu Han , Jing-Yuan Chen 2021
We construct a class of lattice Hamiltonians that exhibit fractional Hall conductivity. These Hamiltonians, while not being exactly solvable, can be controllably solved in their low energy sectors, through a combination of perturbative and exact tech niques. Our construction demonstrates a systematic way to circumvent the Kapustin-Fidkowski no-go theorem and is generalizable.
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We find quantum Hall states in the Composite Fermion family and a precursor signal at filling fra ction $ u=5/2$. We analyse the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarised Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.
We studied neutral excitations in a two-dimensional electron system with an orbital momentum $Delta M = 1$ and spin projection over magnetic field axis $Delta S_z = 1$ in the vicinity of a filling factor of 3/2. It is shown that the 3/2 state is a si ngular point in the filling factor dependence of the spin ordering of the two-dimensional electron system. In the vicinity of $ u=3/2$, a significant increase in the relaxation time ($tau = 13$ $mutext{s}$) for the excitations to the ground state is exhibited even though the number of vacancies in the lowest energy level is macroscopically large. The decrease of the relaxation rate is related to the spin texture transformation in the ground state induced by spin flips and electron density rearrangement. We claim the 3/2 state is a locally incompressible fractional quantum Hall state.
161 - M.I. Dyakonov 2012
A simple one-dimensional model is proposed, in which N spinless repulsively interacting fermions occupy M>N degenerate states. It is argued that the energy spectrum and the wavefunctions of this system strongly resemble the spectrum and wavefunctions of 2D electrons in the lowest Landau level (the problem of the Fractional Quantum Hall Effect). In particular, Laughlin-type wavefunctions describe ground states at filling factors v = N/M = 1(2m+1). Within this model the complimentary wavefunction for v = 1-1/(2m + 1) is found explicitly and extremely simple ground state wavefunctions for arbitrary odd-denominator filling factors are proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا