ﻻ يوجد ملخص باللغة العربية
We construct a class of lattice Hamiltonians that exhibit fractional Hall conductivity. These Hamiltonians, while not being exactly solvable, can be controllably solved in their low energy sectors, through a combination of perturbative and exact techniques. Our construction demonstrates a systematic way to circumvent the Kapustin-Fidkowski no-go theorem and is generalizable.
For the fractional quantum Hall states on a finite disc, we study the thermoelectric transport properties under the influence of an edge and its reconstruction. In a recent study on a torus [Phys. Rev. B 101, 241101 (2020)], Sheng and Fu found a univ
We report on our systematic attempts at finding local interactions for which the lowest-Landau-level projected composite-fermion wave functions are the unique zero energy ground states. For this purpose, we study in detail the simplest non-trivial sy
We consider the process of flux insertion for ground states of almost local commuting projector Hamiltonians in two spatial dimensions. In the case of finite dimensional local Hilbert spaces, we prove that this process cannot pump any charge and we conclude that the Hall conductance must vanish.
We discuss anomalous fractional quantum Hall effect that exists without external magnetic field. We propose that excitations in such systems may be described effectively by non-interacting particles with the Hamiltonians defined on the Brillouin zone
We consider the effect of coupling between phonons and a chiral Majorana edge in a gapped chiral spin liquid with Ising anyons (e.g., Kitaevs non-Abelian spin liquid on the honeycomb lattice). This is especially important in the regime in which the l