ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological transitive sequence of cosine operators on Orlicz space

66   0   0.0 ( 0 )
 نشر من قبل Vishvesh Kumar
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a Young function $phi$ and a locally compact second countable group $G,$ let $L^phi(G)$ denote the Orlicz space on $G.$ In this article, we present a necessary and sufficient condition for the topological transitivity of a sequence of cosine operators ${C_n}_{n=1}^{infty}:={frac{1}{2}(T^n_{g,w}+S^n_{g,w})}_{n=1}^{infty}$, defined on $L^{phi}(G)$. We investigate the conditions for a sequence of cosine operators to be topological mixing. Moreover, we go on to prove the similar results for the direct sum of a sequence of the cosine operators. At the last, an example of a topological transitive sequence of cosine operators is given.



قيم البحث

اقرأ أيضاً

The approximation of functions in Orlicz space by multivariate operators on simplex is considered. The convergence rate is given by using modulus of smoothness.
Let $f in M_+(mathbb{R}_+)$, the class of nonnegative, Lebesgure-measurable functions on $mathbb{R}_+=(0, infty)$. We deal with integral operators of the form [ (T_Kf)(x)=int_{mathbb{R}_+}K(x,y)f(y), dy, quad x in mathbb{R}_+, ] with $K in M_+(mathbb{R}_+^2)$.
We investigate dynamical properties such as topological transitivity, (sequential) hypercyclicity, and chaos for backward shift operators associated to a Schauder basis on LF-spaces. As an application, we characterize these dynamical properties for w eighted generalized backward shifts on Kothe coechelon sequence spaces $k_p((v^{(m)})_{minmathbb{N}})$ in terms of the defining sequence of weights $(v^{(m)})_{minmathbb{N}}$. We further discuss several examples and show that the annihilation operator from quantum mechanics is mixing, sequentially hypercyclic, chaotic, and topologically ergodic on $mathscr{S}(mathbb{R})$.
In this paper, for a locally compact commutative hypergroup $K$ and for a pair $(Phi_1, Phi_2)$ of Young functions satisfying sequence condition, we give a necessary condition in terms of aperiodic elements of the center of $K,$ for the convolution $ fast g$ to exist a.e., where $f$ and $g$ are arbitrary elements of Orlicz spaces $L^{Phi_1}(K)$ and $L^{Phi_2}(K)$, respectively. As an application, we present some equivalent conditions for compactness of a compactly generated locally compact abelian group. Moreover, we also characterize compact convolution operators from $L^1_w(K)$ into $L^Phi_w(K)$ for a weight $w$ on a locally compact hypergroup $K$.
234 - Xiaofeng Wang , Guangfu Cao , 2012
We obtain sufficient conditions for a densely defined operator on the Fock space to be bounded or compact. Under the boundedness condition we then characterize the compactness of the operator in terms of its Berezin transform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا