ﻻ يوجد ملخص باللغة العربية
In this paper, for a locally compact commutative hypergroup $K$ and for a pair $(Phi_1, Phi_2)$ of Young functions satisfying sequence condition, we give a necessary condition in terms of aperiodic elements of the center of $K,$ for the convolution $fast g$ to exist a.e., where $f$ and $g$ are arbitrary elements of Orlicz spaces $L^{Phi_1}(K)$ and $L^{Phi_2}(K)$, respectively. As an application, we present some equivalent conditions for compactness of a compactly generated locally compact abelian group. Moreover, we also characterize compact convolution operators from $L^1_w(K)$ into $L^Phi_w(K)$ for a weight $w$ on a locally compact hypergroup $K$.
In this paper the necessary and sufficient conditions were given for Orlicz-Lorentz function space endowed with the Orlicz norm having non-squareness and local uniform non-squareness.
We prove the classical Hausdorff-Young inequality for Orlicz spaces on compact homogeneous manifolds.
Let $UC(K)$ denote the Banach space of all bounded uniformly continuous functions on a hypergroup $K$. The main results of this article concern on the $alpha$-amenability of $UC(K)$ and quotients and products of hypergroups. It is also shown that a S
We study the existence of multiplier (completely) bounded approximate identities for the Fourier algebras of some classes of hypergroups. In particular we show that, a large class of commutative hypergroups are weakly amenable with the Cowling-Haager
In this paper, we characterize hypercyclic sequences of weighted translation operators on an Orlicz space in the context of locally compact hypergroups.