ﻻ يوجد ملخص باللغة العربية
We study stochastic multi-armed bandits with many players. The players do not know the number of players, cannot communicate with each other and if multiple players select a common arm they collide and none of them receive any reward. We consider the static scenario, where the number of players remains fixed, and the dynamic scenario, where the players enter and leave at any time. We provide algorithms based on a novel `trekking approach that guarantees constant regret for the static case and sub-linear regret for the dynamic case with high probability. The trekking approach eliminates the need to estimate the number of players resulting in fewer collisions and improved regret performance compared to the state-of-the-art algorithms. We also develop an epoch-less algorithm that eliminates any requirement of time synchronization across the players provided each player can detect the presence of other players on an arm. We validate our theoretical guarantees using simulation based and real test-bed based experiments.
We introduce a framework for decentralized online learning for multi-armed bandits (MAB) with multiple cooperative players. The reward obtained by the players in each round depends on the actions taken by all the players. Its a team setting, and the
Multi-player Multi-Armed Bandits (MAB) have been extensively studied in the literature, motivated by applications to Cognitive Radio systems. Driven by such applications as well, we motivate the introduction of several levels of feedback for multi-pl
This paper focuses on building personalized player models solely from player behavior in the context of adaptive games. We present two main contributions: The first is a novel approach to player modeling based on multi-armed bandits (MABs). This appr
We introduce a new class of reinforcement learning methods referred to as {em episodic multi-armed bandits} (eMAB). In eMAB the learner proceeds in {em episodes}, each composed of several {em steps}, in which it chooses an action and observes a feedb
We consider a fully decentralized multi-player stochastic multi-armed bandit setting where the players cannot communicate with each other and can observe only their own actions and rewards. The environment may appear differently to different players,