ﻻ يوجد ملخص باللغة العربية
Breakthroughs in two-dimensional van der Waals heterostructures have revealed that twisting creates a moire pattern that quenches the kinetic energy of electrons, allowing for exotic many-body states. We show that cold-atomic, trapped ion, and metamaterial systems can emulate the effects of a twist in many models from one to three dimensions. Further, we demonstrate at larger angles (and argue at smaller angles) that by considering incommensurate effects, the magic-angle effect becomes a single-particle quantum phase transition (including in a model for twisted bilayer graphene in the chiral limit). We call these models magic-angle semimetals. Each contains nodes in the band structure and an incommensurate modulation. At magic-angle criticality, we report a nonanalytic density of states, flat bands, multifractal wave functions that Anderson delocalize in momentum space, and an essentially divergent effective interaction scale. As a particular example, we discuss how to observe this effect in an ultracold Fermi gas.
We construct and solve a two-dimensional, chirally symmetric model of Dirac cones subjected to a quasiperiodic modulation. In real space, this is realized with a quasiperiodic hopping term. This hopping model, as we show, at the Dirac node energy has
We investigate the interplay of Coulomb interactions and correlated disorder in pseudospin-3/2 semimetals, which exhibit birefringent spectra in the absence of interactions. Coulomb interactions drive the system to a marginal Fermi liquid, both for t
The effects of downfolding a Brillouin zone can open gaps and quench the kinetic energy by flattening bands. Quasiperiodic systems are extreme examples of this process, which leads to new phases and critical eigenstates. We analytically and numerical
Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (A
Precise nature of MBL transitions in both random and quasiperiodic (QP) systems remains elusive so far. In particular, whether MBL transitions in QP and random systems belong to the same universality class or two distinct ones has not been decisively