ﻻ يوجد ملخص باللغة العربية
We investigate the interplay of Coulomb interactions and correlated disorder in pseudospin-3/2 semimetals, which exhibit birefringent spectra in the absence of interactions. Coulomb interactions drive the system to a marginal Fermi liquid, both for the two-dimensional (2d) and three-dimensional (3d) cases. Short-ranged correlated disorder and a power-law correlated disorder have the same engineering dimension as the Coulomb term, for the 2d and 3d systems, respectively, in a renormalization group (RG) sense. In order to analyze the combined effects of these two kinds of interactions, we apply a dimensional regularization scheme and derive the RG flow equations. The results show that the marginal Fermi liquid phase is robust against disorder.
Luttinger semimetals have quadratic band crossings at the Brillouin zone-center in three spatial dimensions. Coulomb interactions in a model that describes these systems stabilize a non-trivial fixed point associated with a non-Fermi liquid state, al
Recent angle resolved photoemission spectroscopy measurements have identified an inversion symmetry breaking Weyl semimetal phase in TaAs and NbAs. In an inversion symmetry breaking Weyl semimetal the left and the right handed Weyl points can occur a
A longstanding open problem in condensed matter physics is whether or not a strongly disordered interacting insulator can be mapped to a system of effectively non-interacting localized excitations. We investigate this issue on the insulating side of
We study one-dimensional Kondo Lattices (KL) which consist of itinerant electrons interacting with Kondo impurities (KI) - localized quantum magnetic moments. We focus on KL with isotropic exchange interaction between electrons and KI and with a high
We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculatio