ﻻ يوجد ملخص باللغة العربية
Following the discovery of blue large-amplitude pulsators (BLAPs), single star evolu- tion models of post red giant branch stars that have undergone a common envelope (CE) ejection in the form of a high mass loss rate have been constructed and analysed for pulsation stability. The effects of atomic diffusion, particularly radiative levitation, have been examined. Two principal models were considered, being post-CE stars of 0.31 and 0.46 M$_{odot}$. Such stars are likely, in turn, to become either low-mass helium white dwarfs or core helium-burning extreme horizontal-branch stars. The inclusion of radiative levitation leads to opacity driven pulsations in both types of post-CE object when their effective temperatures are comparable to those of BLAPs, with similar periods. The extent of the instability region for models in these simulations, which are not in thermal balance, is larger than that found for static models, in agreement with previous theory. By comparing to observations, and making some simple evolutionary assumptions, we conclude the 0.31 M$_{odot}$ star is the more likely candidate for BLAPs. The rate of period change is negative for both cases, so the origin of BLAPs with positive rates of period change remain uncertain.
Blue Large-Amplitude Pulsators (BLAPs) are a recently discovered class of pulsating star, believed to be proto-white dwarfs, produced by mass stripping of a red giant when it has a small helium core. An outstanding question is why the stars in this c
Regular intrinsic brightness variations observed in many stars are caused by pulsations. These pulsations provide information on the global and structural parameters of the star. The pulsation periods range from seconds to years, depending on the com
We report the first results of our programme to obtain multi-epoch radial velocity measurements of stars with a strong far-UV excess to identify post common-envelope binaries (PCEBs). The targets have been identified using optical photometry from SDS
Modelling dust formation in single stars evolving through the carbon-star stage of the asymptotic giant branch (AGB) reproduces well the mid-infrared colours and magnitudes of most of the C-rich sources in the Large Magellanic Cloud (LMC), apart from
Period or amplitude variations in eclipsing binaries may reveal the presence of additional massive bodies in the system, such as circumbinary planets. Here, we have studied twelve previously-known eclipsing post-common-envelope binaries for evidence