ترغب بنشر مسار تعليمي؟ اضغط هنا

A survey for post common-envelope binary stars using GALEX and SDSS photometry

129   0   0.0 ( 0 )
 نشر من قبل Dr Pierre Maxted
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P.F.L. Maxted




اسأل ChatGPT حول البحث

We report the first results of our programme to obtain multi-epoch radial velocity measurements of stars with a strong far-UV excess to identify post common-envelope binaries (PCEBs). The targets have been identified using optical photometry from SDSS DR4, ultraviolet photometry from GALEX GR2 and proper motion information from SDSS DR5. We have obtained spectra at two or more epochs for 36 targets. Three of our targets show large radial velocity shifts (>50km/s) on a timescale of hours or days and are almost certainly PCEBs. For one of these targets (SDSS J104234.77+644205.4) we have obtained further spectroscopy to confirm that this is a PCEB with an orbital period of 4.74h and semi-amplitude K =165 km/s. Two targets are rapidly rotating K-dwarfs which appear to show small radial velocity shifts and have strong Ca II H+K emission lines. These may be wind-induced rapidly rotating (WIRRing) stars. These results show that we can use GALEX and SDSS photometry to identify PCEBs that cannot be identified using SDSS photometry alone, and to identify new WIRRing stars. A more comprehensive survey of stars identified using the methods developed in this paper will lead to a much improved understanding of common envelope evolution.



قيم البحث

اقرأ أيضاً

Following the discovery of blue large-amplitude pulsators (BLAPs), single star evolu- tion models of post red giant branch stars that have undergone a common envelope (CE) ejection in the form of a high mass loss rate have been constructed and analys ed for pulsation stability. The effects of atomic diffusion, particularly radiative levitation, have been examined. Two principal models were considered, being post-CE stars of 0.31 and 0.46 M$_{odot}$. Such stars are likely, in turn, to become either low-mass helium white dwarfs or core helium-burning extreme horizontal-branch stars. The inclusion of radiative levitation leads to opacity driven pulsations in both types of post-CE object when their effective temperatures are comparable to those of BLAPs, with similar periods. The extent of the instability region for models in these simulations, which are not in thermal balance, is larger than that found for static models, in agreement with previous theory. By comparing to observations, and making some simple evolutionary assumptions, we conclude the 0.31 M$_{odot}$ star is the more likely candidate for BLAPs. The rate of period change is negative for both cases, so the origin of BLAPs with positive rates of period change remain uncertain.
We present the discovery with WISE of a significant infrared excess associated with the eclipsing post-common envelope binary SDSSJ 030308.35+005443.7, the first excess discovered around a non-interacting white dwarf+main sequence M dwarf binary. The spectral energy distribution of the white dwarf+M dwarf companion shows significant excess longwards of 3-microns. A T_eff of 8940K for the white dwarf is consistent with a cooling age >2 Gyr, implying that the excess may be due to a recently formed circumbinary dust disk of material that extends from the tidal truncation radius of the binary at 1.96 Rsun out to <0.8 AU, with a total mass of ~10^20 g. We also construct WISE and follow-up ground-based near-infrared light curves of the system, and find variability in the K-band that appears to be in phase with ellipsoidal variations observed in the visible. The presence of dust might be due to a) material being generated by the destruction of small rocky bodies that are being perturbed by an unseen planetary system or b) dust condensing from the companions wind. The high inclination of this system, and the presence of dust, make it an attractive target for M dwarf transit surveys and long term photometric monitoring.
77 - F. DellAgli 2020
Modelling dust formation in single stars evolving through the carbon-star stage of the asymptotic giant branch (AGB) reproduces well the mid-infrared colours and magnitudes of most of the C-rich sources in the Large Magellanic Cloud (LMC), apart from a small subset of extremely red objects (EROs). The analysis of EROs spectral energy distribution suggests the presence of large quantities of dust, which demand gas densities in the outflow significantly higher than expected from theoretical modelling. We propose that binary interaction mechanisms that involve common envelope (CE) evolution could be a possible explanation for these peculiar stars; the CE phase is favoured by the rapid growth of the stellar radius occurring after C$/$O overcomes unity. Our modelling of the dust provides results consistent with the observations for mass-loss rates $dot M sim 5times 10^{-4}~dot M/$yr, a lower limit to the rapid loss of the envelope experienced in the CE phase. We propose that EROs could possibly hide binaries of orbital periods $sim$days and are likely to be responsible for a large fraction of the dust production rate in galaxies.
121 - U. Backhaus 2012
As part of an ongoing collaboration between student groups at high schools and professional astronomers, we have searched for the presence of circum-binary planets in a bona-fide unbiased sample of twelve post-common envelope binaries (PCEBs) from th e Catalina Sky Survey (CSS) and the Sloan Digital Sky Survey (SDSS). Although the present ephemerides are significantly more accurate than previous ones, we find no clear evidence for orbital period variations between 2005 and 2011 or during the 2011 observing season. The sparse long-term coverage still permits O-C variations with a period of years and an amplitude of tens of seconds, as found in other systems. Our observations provide the basis for future inferences about the frequency with which planet-sized or brown-dwarf companions have either formed in these evolved systems or survived the common envelope (CE) phase.
164 - Brent Miszalski 2015
Nearly 50 post-common-envelope (post-CE) close binary central stars of planetary nebulae (CSPNe) are now known. Most contain either main sequence or white dwarf (WD) companions that orbit the WD primary in around 0.1-1.0 days. Only PN~G222.8-04.2 and NGC~5189 have post-CE CSPNe with a Wolf-Rayet star primary (denoted [WR]), the low-mass analogues of massive Wolf-Rayet stars. It is not well understood how H-deficient [WR] CSPNe form, even though they are relatively common, appearing in over 100 PNe. The discovery and characterisation of post-CE [WR] CSPNe is essential to determine whether proposed binary formation scenarios are feasible to explain this enigmatic class of stars. The existence of post-CE [WR] binaries alone suggests binary mergers are not necessarily a pathway to form [WR] stars. Here we give an overview of the initial results of a radial velocity monitoring programme of [WR] CSPNe to search for new binaries. We discuss the motivation for the survey and the associated strong selection effects. The mass functions determined for PN~G222.8-04.2 and NGC~5189, together with literature photometric variability data of other [WR] CSPNe, suggest that of the post-CE [WR] CSPNe yet to be found, most will have WD or subdwarf O/B-type companions in wider orbits than typical post-CE CSPNe (several days or months c.f. less than a day).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا