ﻻ يوجد ملخص باللغة العربية
We present a multi-frequency, dense radio monitoring program of the blazar OJ287 using the 100m Effelsberg radio telescope. We analyze the evolution in total flux density, linear and circular polarization to study the jet structure and its magnetic field geometry. The total flux density is measured at nine bands from 2.64 GHz to 43 GHz, the linear polarization parameters between 2.64 GHz and 10.45 GHz, and the circular polarization at 4.85 GHz and 8.35 GHz. The mean cadence is 10 days. Between MJD 57370 and 57785, OJ287 showed flaring activity and complex linear and circular polarization behavior. The radio EVPA showed a large clockwise (CW) rotation by ~340$^{circ}$ with a mean rate of -1.04 $^{circ}$/day. Based on concurrent VLBI data, the rotation seems to originate within the jet core at 43 GHz (projected size $le$ 0.15 mas or 0.67 pc). Moreover, optical data show a similar monotonic CW EVPA rotation with a rate of about -1.1 $^{circ}$/day which is superposed with shorter and faster rotations of about 7.8 $^{circ}$/day. The observed variability is consistent with a polarized emission component propagating on a helical trajectory within a bent jet. We constrained the helix arc length to 0.26 pc and radius to $le$ 0.04 pc as well as the jet bending arc length projected on the plane of the sky to $le$ 1.9-7.6 pc. A similar bending is observed in high angular resolution VLBI images at the innermost jet regions. Our results indicate also the presence of a stable polarized emission component with EVPA (-10$^{circ}$) perpendicular to the large scale jet, suggesting dominance of the poloidal magnetic field component. Finally, the EVPA rotation begins simultaneously with an optical flare and hence the two might be physically connected. That optical flare has been linked to the interaction of a secondary SMBH with the inner accretion disk or originating in the jet of the primary.
Radio emission in blazars -- the aligned subset of Active Galactic Nuclei (AGN) -- is produced by synchrotron electrons moving relativistically in their jets magnetic field. Under the assumption of some degree of uniformity of the field, the emission
The Gamma-ray BL Lac object OJ 287 is known to exhibit inner-parsec jet-wobbling, high degrees of variability at all wavelengths and quasi-stationary features including an apparent (~100 deg) position angle change in projection on the sky plane. Sub-
We analyze the linear polarization of the relativistic jet in BL Lacertae object OJ~287 as revealed by multi-epoch Very Long Baseline Array (VLBA) images at 43 GHz and monitoring observations at optical bands. The electric-vector position angle (EVPA
We present the results of simultaneous multi-frequency imaging observations at 22, 43, 86, and 129,GHz of OJ,287. We used the Korean VLBI Network as part of the Interferometric MOnitoring of GAmma-ray Bright active galactic nuclei (iMOGABA). The iMOG
We have obtained a smooth time series for the Electric Vector Position Angle (EVPA) of the blazar OJ 287 at centimeter wavelengths, by making $pm npi$ adjustments to archival values from 1974 to 2016. The data display rotation reversals in which the