ترغب بنشر مسار تعليمي؟ اضغط هنا

Location of Gamma-ray emission and magnetic field strengths in OJ 287

73   0   0.0 ( 0 )
 نشر من قبل Jeffrey Hodgson
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Gamma-ray BL Lac object OJ 287 is known to exhibit inner-parsec jet-wobbling, high degrees of variability at all wavelengths and quasi-stationary features including an apparent (~100 deg) position angle change in projection on the sky plane. Sub-50 micro-arcsecond resolution 86 GHz observations with the global mm-VLBI array (GMVA) supplement ongoing multi-frequency VLBI blazar monitoring at lower frequencies. Using these maps together with cm/mm total intensity and Gamma-ray observations from Fermi/LAT from 2008-2014, we aimed to determine the location of Gamma-ray emission and to explain the inner-mas structural changes. Observations with the GMVA offer approximately double the angular resolution compared with 43 GHz VLBA observations and allow us to observe above the synchrotron self-absorption peak frequency. The jet was spectrally decomposed at multiple locations along the jet. From this we derived estimates of the magnetic field. How the field decreases down the jet allowed an estimate of the distance to the jet apex and an estimate of the magnetic field strength at the jet apex and in the broad line region. Combined with accurate kinematics we attempt to locate the site of Gamma-ray activity, radio flares and spectral changes. Strong Gamma-ray flares appeared to originate from either the core region, a downstream stationary feature, or both, with Gamma-ray activity significantly correlated with radio flaring in the downstream quasi-stationary feature. Magnetic field estimates were determined at multiple locations along the jet, with the magnetic field found to be >1.6 G in the core and >0.4 G in the downstream quasi-stationary feature. We therefore found upper limits on the location of the core as >6.0 pc from the jet apex and determined an upper limit on the magnetic field near the jet base of the order of thousands of Gauss.



قيم البحث

اقرأ أيضاً

91 - Pankaj Kushwaha 2019
The latest flare of the regular $sim$ 12 years quasi-periodic optical outbursts in the binary SMBH candidate system OJ 287 occurred in December 2015. Following this, the source has exhibited enhanced multi-wavelength (MW) variability in spectral, tem poral and polarization domains with new features never seen before. Our MW investigation show that the overall MW variability can be divided into two-phase, (i) November 2015 -- May 2016 with variability from near-infrared (NIR) to Fermi-LAT $rm gamma$-ray energies (0.1 -- 300 GeV), and (ii) September 2016 -- July 2017 with intense NIR to X-ray variability but without any activity in the Fermi-LAT band, and the very first detection at very high energies (VHEs, E $>$ 100 GeV) by VERITAS. The broadband SEDs during the first phase show a thermal bump in the NIR-optical region and a hardening in the $rm gamma$-ray spectra with a shift in its peak. The thermal bump like feature is consistent with the description of the standard accretion-disk associated with the primary SMBH of mass $sim 1.8times10^{10} M_odot$ while the $rm gamma$-ray emission can be naturally reproduced by inverse Compton scattering of photons from the broad line region which has been seen during the close encounter duration of the binary SMBHs, thereby suggesting a sub-parsec scale origin. The SEDs during the second phase (VHE detection) is a mixture of typical OJ 287 SED with hardened $rm gamma$-ray spectra and an HBL SED and can be explained in a two-zone model, one located at sub-parsec scales and other at parsec scales. During both the phases, the MW variability is simultaneous and almost always accompanied by changes in the polarization properties, exhibiting random and systematic variations, suggesting a strong role of magnetic field and turbulence.
We present the results of simultaneous multi-frequency imaging observations at 22, 43, 86, and 129,GHz of OJ,287. We used the Korean VLBI Network as part of the Interferometric MOnitoring of GAmma-ray Bright active galactic nuclei (iMOGABA). The iMOG ABA observations were performed during 31 epochs from 2013 January 16 to 2016 December 28. We also used 15,GHz OVRO and 225,GHz SMA flux density data. We analyzed four flux enhancements in the light curves. The estimated time scales of three flux enhancements were similar with time scales of $sim$50 days at two frequencies. A fourth flux enhancement had a variability timescale approximately twice as long. We found that 225,GHz enhancements led the 15,GHz enhancements by a range of 7 to 30 days in the time delay analysis. We found the fractional variability did not change with frequency between 43 and 86,GHz. We could reliably measure the turnover frequency, $ u_{rm c}$, of the core of the source in three epochs. This was measured to be in a range from 27 to 50,GHz and a flux density at the turnover frequency, $S_{rm m}$, ranging from 3-6,Jy. The derived SSA magnetic fields, $B_{rm SSA}$, are in a range from $0.157pm0.104$ to $0.255pm0.146$ mG. We estimated the equipartition magnetic field strengths to be in a range from $0.95pm0.15$ to $1.93pm0.30$ mG. The equipartition magnetic field strengths are up to a factor of 10 higher than the values of $B_{rm SSA}$. We conclude that the downstream jet may be more particle energy dominated.
We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending towards the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z_c = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.
The broadband spectrum of a BL Lac object, OJ 287, from radio to $gamma$-rays obtained during a major $gamma$-ray flare detected by emph{Fermi} in 2009 are studied to understand the high energy emission mechanism during this episode. Using a simple o ne-zone leptonic model, incorporating synchrotron and inverse Compton emission processes, we show that the explanation of high energy emission from X-rays to $gamma$-rays, by considering a single emission mechanism, namely, synchrotron self-Compton (SSC) or external Compton (EC) requires unlikely physical conditions. However, a combination of both SSC and EC mechanisms can reproduce the observed high energy spectrum satisfactorily. Using these emission mechanisms we extract the physical parameters governing the source and its environment. Our study suggests that the emission region of OJ 287 is surrounded by a warm infrared (IR) emitting region of $sim 250 , K$. Assuming this region as a spherical cloud illuminated by an accretion disk, we obtain the location of the emission region to be $sim 9 pc$. This supports the claim that the $gamma$-ray emission from OJ 287 during the 2009 flare arises from a location far away from the central engine as deduced from millimeter-gamma ray correlation study and very long baseline array images.
We report the detection of a probable $gamma$-ray quasi-periodic oscillation (QPO) of around 314 days in the monthly binned 0.1 -- 300 GeV $gamma$-ray {it Fermi}-LAT light curve of the well known BL Lac blazar OJ 287. To identify and quantify the QPO nature of the $gamma$-ray light curve of OJ 287, we used the Lomb-Scargle periodogram (LSP), REDFIT, and weighted wavelet z-transform (WWZ) analyses. We briefly discuss possible emission models for radio-loud active galactic nuclei (AGN) that can explain a $gamma$-ray QPO of such a period in a blazar. Reports of changes in the position of quasi-stationary radio knots over a yearly timescale as well as a strong correlation between gamma-ray and mm-radio emission in previous studies indicate that the signal is probably associated with these knots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا