ﻻ يوجد ملخص باللغة العربية
We revisit the famous Coleman-de Luccia formalism for decay of false vacuum in gravitational theory. Since the corresponding wave function is time-independent we argue that its instantons interpretation as the decay rate probability is problematic. We instead propose that such phenomenon can better be described by the Wheeler-de Witts wave function. To do so, the Hamilton-Jacobi formalism is employed in the WKB approximation. The scalar and gravitational fields can then be treated as a two-dimensional effective metric. For a particular case of dS-to-dS tunneling, we calculated the wave function and found that it depends only on the potential of the false, and not on the true, vacuum; reminiscent of, though in totally different formalism with, the Hawking-Moss result. In general, this alternative approach might have significant impact on the study of very early universe and quantum cosmology.
We study Coleman-de Luccia tunneling in some detail. We show that, for a single scalar field potential with a true and a false vacuum, there are four types of tunneling, depending on the properties of the potential. A general tunneling process involv
The usual (type A) thin-wall Coleman-de Luccia instanton is made by a bigger-than-half sphere of the false vacuum and a smaller-than-half sphere of the true vacuum. It has a the standard O(4) symmetric negative mode associated with changing the size
Coleman-de Luccia processes for AdS to AdS decays in Einstein-scalar theories are studied. Such tunnelling processes are interpreted as vev-driven holographic RG flows of a quantum field theory on de Sitter space-time. These flows do not exist for ge
We compute the linearized Weyl-Weyl correlator using a new solution for the graviton propagator on de Sitter background in de Donder gauge. The result agrees exactly with a previous computation in a noncovariant gauge. We also use dimensional regular
The properties of Lorentz transformations in de Sitter relativity are studied. It is shown that, in addition to leaving invariant the velocity of light, they also leave invariant the length-scale related to the curvature of the de Sitter spacetime. T