ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting Coleman-de Luccia transitions in the AdS regime using holography

232   0   0.0 ( 0 )
 نشر من قبل Lukas Witkowski
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coleman-de Luccia processes for AdS to AdS decays in Einstein-scalar theories are studied. Such tunnelling processes are interpreted as vev-driven holographic RG flows of a quantum field theory on de Sitter space-time. These flows do not exist for generic scalar potentials, which is the holographic formulation of the fact that gravity can act to stabilise false AdS vacua. The existence of Coleman-de Luccia tunnelling solutions in a potential with a false AdS vacuum is found to be tied to the existence of exotic RG flows in the same potential. Such flows are solutions where the flow skips possible fixed points or reverses direction in the coupling. This connection is employed to construct explicit potentials that admit Coleman-de Luccia instantons in AdS and to study the associated tunnelling solutions. Thin-walled instantons are observed to correspond to dual field theories with a parametrically large value of the dimension $Delta$ for the operator dual to the scalar field, casting doubt on the attainability of this regime in holography. From the boundary perspective, maximally symmetric instantons describe the probability of symmetry breaking of the dual QFT in de Sitter. It is argued that, even when such instantons exist, they do not imply an instability of the same theory on flat space or on $Rtimes S^3$.



قيم البحث

اقرأ أيضاً

128 - I-Sheng Yang 2012
The usual (type A) thin-wall Coleman-de Luccia instanton is made by a bigger-than-half sphere of the false vacuum and a smaller-than-half sphere of the true vacuum. It has a the standard O(4) symmetric negative mode associated with changing the size of false vacuum region. On the other hand, the type B instanton, made by two smaller-than-half spheres, was believed to have lost this negative mode. We argue that such belief is misguided due to an over-restriction on Euclidean path integral. We introduce the idea of a purely geometric junction to visualize why such restriction could be removed, and then explicitly construct this negative mode. We also show that type B and type A instantons have the same thermal interpretation for mediating tunnelings.
We study Coleman-de Luccia tunneling in some detail. We show that, for a single scalar field potential with a true and a false vacuum, there are four types of tunneling, depending on the properties of the potential. A general tunneling process involv es a combination of thermal (Gibbons-Hawking temperature) fluctuation part way up the barrier followed by quantum tunneling. The thin-wall approximation is a special limit of the case (of only quantum tunneling) where inside the nucleation bubble is the true vacuum while the outside reaches the false vacuum. Hawking-Moss tunneling is the (only thermal fluctuation) limit of the case where the inside of the bubble does not reach the true vacuum at the moment of its creation, and the outside is cut off by the de Sitter horizon before it reaches the false vacuum. We estimate the corrections to the Hawking-Moss formula, which can be large. In all cases, we see that the bounce of the Euclidean action decreases rapidly as the vacuum energy density increases, signaling that the tunneling is not exponentially suppressed. In some sense, this phenomenon may be interpreted as a finite temperature effect due to the Gibbons-Hawking temperature of the de Sitter space. As an application, we discuss the implication of this tunneling property to the cosmic landscape.
65 - J. Kristiano , R. D. Lambaga , 2018
We revisit the famous Coleman-de Luccia formalism for decay of false vacuum in gravitational theory. Since the corresponding wave function is time-independent we argue that its instantons interpretation as the decay rate probability is problematic. W e instead propose that such phenomenon can better be described by the Wheeler-de Witts wave function. To do so, the Hamilton-Jacobi formalism is employed in the WKB approximation. The scalar and gravitational fields can then be treated as a two-dimensional effective metric. For a particular case of dS-to-dS tunneling, we calculated the wave function and found that it depends only on the potential of the false, and not on the true, vacuum; reminiscent of, though in totally different formalism with, the Hawking-Moss result. In general, this alternative approach might have significant impact on the study of very early universe and quantum cosmology.
70 - Jani Kastikainen 2020
We study codimension-even conical defects that contain a deficit solid angle around each point along the defect. We show that they lead to a delta function contribution to the Lovelock scalar and we compute the contribution by two methods. We then sh ow that these codimension-even defects appear as Euclidean brane solutions in higher dimensional topological AdS gravity which is Lovelock-Chern-Simons gravity without torsion. The theory possesses a holographic Weyl anomaly that is purely of type-A and proportional to the Lovelock scalar. Using the formula for the defect contribution, we prove a holographic duality between codimension-even defect partition functions and codimension-even brane on-shell actions in Euclidean signature. More specifically, we find that the logarithmic divergences match, because the Lovelock-Chern-Simons action localizes on the brane exactly. We demonstrate the duality explicitly for a spherical defect on the boundary which extends as a codimension-even hyperbolic brane into the bulk. For vanishing brane tension, the geometry is a foliation of Euclidean AdS space that provides a one-parameter generalization of AdS-Rindler space.
This paper explores construction of gauge (diffeomorphism)-invariant observables in anti de Sitter (AdS) space and the related question of how to find a holographic map providing a quantum equivalence to a boundary theory. Observables are constructed perturbatively to leading order in the gravitational coupling by gravitationally dressing local field theory operators in order to solve the gravitational constraints. Many such dressings are allowed and two are explicitly examined, corresponding to a gravitational line and to a Coulomb field; these also reveal an apparent role for more general boundary conditions than considered previously. The observables obey a nonlocal algebra, and we derive explicit expressions for the boundary generators of the SO(D-1,2) AdS isometries that act on them. We examine arguments that gravity {it explains} holography through the role of such a boundary Hamiltonian. Our leading-order gravitational construction reveals some questions regarding how these arguments work, and indeed construction of such a holographic map appears to require solution of the non-perturbative generalization of the bulk constraint equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا