ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous diffusion and the Moses effect in a model of aging

109   0   0.0 ( 0 )
 نشر من قبل Philipp Meyer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We decompose the anomalous diffusive behavior found in a model of aging into its fundamental constitutive causes. The model process is a sum of increments that are iterates of a chaotic dynamical system, the Pomeau-Manneville map. The increments can have long-time correlations, fat-tailed distributions and be non-stationary. Each of these properties can cause anomalous diffusion through what is known as the Joseph, Noah and Moses effects, respectively. The model can have either sub- or super-diffusive behavior, which we find is generally due to a combination of the three effects. Scaling exponents quantifying each of the three constitutive effects are calculated using analytic methods and confirmed with numerical simulations. They are then related to the scaling of the distribution of the process through a scaling relation. Finally, the importance of the Moses effect in the anomalous diffusion of experimental systems is discussed.



قيم البحث

اقرأ أيضاً

We address this work to investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following a power law probability density. In this analysis, we consider that the sum of n symb ols represents the position of a particle in erratic movement. This approach revealed a rich diffusive scenario characterized by non-Gaussian distributions and, depending on the power law exponent and also on the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare with the numerical data, finding a good agreement. Because of its simplicity and flexibility, this model can be a candidate to describe real systems governed by power laws probabilities densities.
We discuss anomalous relaxation processes in Davydov one-dimensional chain molecule that consists of an exciton and an acoustic phonon field as a thermal reservoir in the chain. We derive a kinetic equation for the exciton using the complex spectral representation of the Liouville-von Neumann operator. Due to the one-dimensionality, the momentum space separates into infinite sets of disjoint irreducible subspaces dynamically independent of one another. Hence, momentum relaxation occurs only within each subspace toward the Maxwell distribution. We obtain a hydrodynamic mode with transport coefficients, a sound velocity and a diffusion coefficient, defined in each subspace. Moreover, because the sound velocity has momentum dependence, phase mixing affects the broadening of the spatial distribution of the exciton in addition to the diffusion process. Due to the phase mixing the increase rate of the mean-square displacement of the exciton increases linearly with time and diverges in the long-time limit.
143 - A.V. Milovanov , A. Iomin 2014
This study is concerned with destruction of Anderson localization by a nonlinearity of the power-law type. We suggest using a nonlinear Schrodinger model with random potential on a lattice that quadratic nonlinearity plays a dynamically very distingu ished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. For super-quadratic nonlinearity the borderline spreading corresponds to diffusion processes on finite clusters. We have proposed an analytical method to predict and explain such transport processes. Our method uses a topological approximation of the nonlinear Anderson model and, if the exponent of the power nonlinearity is either integer or half-integer, will yield the wanted value of the transport exponent via a triangulation procedure in an Euclidean mapping space. A kinetic picture of the transport arising from these investigations uses a fractional extension of the diffusion equation to fractional derivatives over the time, signifying non-Markovian dynamics with algebraically decaying time correlations.
Recent investigations call attention to the dynamics of anomalous diffusion and its connection with basic principles of statistical mechanics. We present here a short review of those ideas and their implications.
A recent paper [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, Mathematical Foundations of Statistica l Mechanics (Dover, New York) 1949] may fail in some systems. In this Letter we show that for all ranges of normal and anomalous diffusion described by a Generalized Langevin Equation the Khinchin theorem holds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا