ﻻ يوجد ملخص باللغة العربية
We decompose the anomalous diffusive behavior found in a model of aging into its fundamental constitutive causes. The model process is a sum of increments that are iterates of a chaotic dynamical system, the Pomeau-Manneville map. The increments can have long-time correlations, fat-tailed distributions and be non-stationary. Each of these properties can cause anomalous diffusion through what is known as the Joseph, Noah and Moses effects, respectively. The model can have either sub- or super-diffusive behavior, which we find is generally due to a combination of the three effects. Scaling exponents quantifying each of the three constitutive effects are calculated using analytic methods and confirmed with numerical simulations. They are then related to the scaling of the distribution of the process through a scaling relation. Finally, the importance of the Moses effect in the anomalous diffusion of experimental systems is discussed.
We address this work to investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following a power law probability density. In this analysis, we consider that the sum of n symb
We discuss anomalous relaxation processes in Davydov one-dimensional chain molecule that consists of an exciton and an acoustic phonon field as a thermal reservoir in the chain. We derive a kinetic equation for the exciton using the complex spectral
This study is concerned with destruction of Anderson localization by a nonlinearity of the power-law type. We suggest using a nonlinear Schrodinger model with random potential on a lattice that quadratic nonlinearity plays a dynamically very distingu
Recent investigations call attention to the dynamics of anomalous diffusion and its connection with basic principles of statistical mechanics. We present here a short review of those ideas and their implications.
A recent paper [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, Mathematical Foundations of Statistica