ترغب بنشر مسار تعليمي؟ اضغط هنا

Language Identification in Code-Mixed Data using Multichannel Neural Networks and Context Capture

70   0   0.0 ( 0 )
 نشر من قبل Soumil Mandal
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An accurate language identification tool is an absolute necessity for building complex NLP systems to be used on code-mixed data. Lot of work has been recently done on the same, but theres still room for improvement. Inspired from the recent advancements in neural network architectures for computer vision tasks, we have implemented multichannel neural networks combining CNN and LSTM for word level language identification of code-mixed data. Combining this with a Bi-LSTM-CRF context capture module, accuracies of 93.28% and 93.32% is achieved on our two testing sets.



قيم البحث

اقرأ أيضاً

Social media has effectively become the prime hub of communication and digital marketing. As these platforms enable the free manifestation of thoughts and facts in text, images and video, there is an extensive need to screen them to protect individua ls and groups from offensive content targeted at them. Our work intends to classify codemixed social media comments/posts in the Dravidian languages of Tamil, Kannada, and Malayalam. We intend to improve offensive language identification by generating pseudo-labels on the dataset. A custom dataset is constructed by transliterating all the code-mixed texts into the respective Dravidian language, either Kannada, Malayalam, or Tamil and then generating pseudo-labels for the transliterated dataset. The two datasets are combined using the generated pseudo-labels to create a custom dataset called CMTRA. As Dravidian languages are under-resourced, our approach increases the amount of training data for the language models. We fine-tune several recent pretrained language models on the newly constructed dataset. We extract the pretrained language embeddings and pass them onto recurrent neural networks. We observe that fine-tuning ULMFiT on the custom dataset yields the best results on the code-mixed test sets of all three languages. Our approach yields the best results among the benchmarked models on Tamil-English, achieving a weighted F1-Score of 0.7934 while scoring competitive weighted F1-Scores of 0.9624 and 0.7306 on the code-mixed test sets of Malayalam-English and Kannada-English, respectively.
This paper describes the development of a multilingual, manually annotated dataset for three under-resourced Dravidian languages generated from social media comments. The dataset was annotated for sentiment analysis and offensive language identificat ion for a total of more than 60,000 YouTube comments. The dataset consists of around 44,000 comments in Tamil-English, around 7,000 comments in Kannada-English, and around 20,000 comments in Malayalam-English. The data was manually annotated by volunteer annotators and has a high inter-annotator agreement in Krippendorffs alpha. The dataset contains all types of code-mixing phenomena since it comprises user-generated content from a multilingual country. We also present baseline experiments to establish benchmarks on the dataset using machine learning methods. The dataset is available on Github (https://github.com/bharathichezhiyan/DravidianCodeMix-Dataset) and Zenodo (https://zenodo.org/record/4750858#.YJtw0SYo_0M).
107 - Zhaoxin Luo , Michael Zhu 2021
Hierarchical structures exist in both linguistics and Natural Language Processing (NLP) tasks. How to design RNNs to learn hierarchical representations of natural languages remains a long-standing challenge. In this paper, we define two different typ es of boundaries referred to as static and dynamic boundaries, respectively, and then use them to construct a multi-layer hierarchical structure for document classification tasks. In particular, we focus on a three-layer hierarchical structure with static word- and sentence- layers and a dynamic phrase-layer. LSTM cells and two boundary detectors are used to implement the proposed structure, and the resulting network is called the {em Recurrent Neural Network with Mixed Hierarchical Structures} (MHS-RNN). We further add three layers of attention mechanisms to the MHS-RNN model. Incorporating attention mechanisms allows our model to use more important content to construct document representation and enhance its performance on document classification tasks. Experiments on five different datasets show that the proposed architecture outperforms previous methods on all the five tasks.
The problem of automatic accent identification is important for several applications like speaker profiling and recognition as well as for improving speech recognition systems. The accented nature of speech can be primarily attributed to the influenc e of the speakers native language on the given speech recording. In this paper, we propose a novel accent identification system whose training exploits speech in native languages along with the accented speech. Specifically, we develop a deep Siamese network-based model which learns the association between accented speech recordings and the native language speech recordings. The Siamese networks are trained with i-vector features extracted from the speech recordings using either an unsupervised Gaussian mixture model (GMM) or a supervised deep neural network (DNN) model. We perform several accent identification experiments using the CSLU Foreign Accented English (FAE) corpus. In these experiments, our proposed approach using deep Siamese networks yield significant relative performance improvements of 15.4 percent on a 10-class accent identification task, over a baseline DNN-based classification system that uses GMM i-vectors. Furthermore, we present a detailed error analysis of the proposed accent identification system.
Natural Language Inference (NLI) is the task of inferring the logical relationship, typically entailment or contradiction, between a premise and hypothesis. Code-mixing is the use of more than one language in the same conversation or utterance, and i s prevalent in multilingual communities all over the world. In this paper, we present the first dataset for code-mixed NLI, in which both the premises and hypotheses are in code-mixed Hindi-English. We use data from Hindi movies (Bollywood) as premises, and crowd-source hypotheses from Hindi-English bilinguals. We conduct a pilot annotation study and describe the final annotation protocol based on observations from the pilot. Currently, the data collected consists of 400 premises in the form of code-mixed conversation snippets and 2240 code-mixed hypotheses. We conduct an extensive analysis to infer the linguistic phenomena commonly observed in the dataset obtained. We evaluate the dataset using a standard mBERT-based pipeline for NLI and report results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا