ﻻ يوجد ملخص باللغة العربية
Hierarchical structures exist in both linguistics and Natural Language Processing (NLP) tasks. How to design RNNs to learn hierarchical representations of natural languages remains a long-standing challenge. In this paper, we define two different types of boundaries referred to as static and dynamic boundaries, respectively, and then use them to construct a multi-layer hierarchical structure for document classification tasks. In particular, we focus on a three-layer hierarchical structure with static word- and sentence- layers and a dynamic phrase-layer. LSTM cells and two boundary detectors are used to implement the proposed structure, and the resulting network is called the {em Recurrent Neural Network with Mixed Hierarchical Structures} (MHS-RNN). We further add three layers of attention mechanisms to the MHS-RNN model. Incorporating attention mechanisms allows our model to use more important content to construct document representation and enhance its performance on document classification tasks. Experiments on five different datasets show that the proposed architecture outperforms previous methods on all the five tasks.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed
Multi-Task Learning (MTL) aims at boosting the overall performance of each individual task by leveraging useful information contained in multiple related tasks. It has shown great success in natural language processing (NLP). Currently, a number of M
There is growing evidence that the prevalence of disagreement in the raw annotations used to construct natural language inference datasets makes the common practice of aggregating those annotations to a single label problematic. We propose a generic
Understanding spoken language is a highly complex problem, which can be decomposed into several simpler tasks. In this paper, we focus on Spoken Language Understanding (SLU), the module of spoken dialog systems responsible for extracting a semantic i
Neural networks models for NLP are typically implemented without the explicit encoding of language rules and yet they are able to break one performance record after another. This has generated a lot of research interest in interpreting the representa