ﻻ يوجد ملخص باللغة العربية
We consider quantum walks with position dependent coin on 1D lattice $mathbb{Z}$. The dispersive estimate $|U^tP_c u_0|_{l^infty}lesssim (1+|t|)^{-1/3} |u_0|_{l^1}$ is shown under $l^{1,1}$ perturbation for the generic case and $l^{1,2}$ perturbation for the exceptional case, where $U$ is the evolution operator of a quantum walk and $P_c$ is the projection to the continuous spectrum. This is an analogous result for Schrodinger operators and discrete Schrodinger operators. The proof is based on the estimate of oscillatory integrals expressed by Jost solutions.
We study large time behavior of quantum walks (QW) with self-dependent coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estimate of (linea
We study large time behavior of quantum walks (QWs) with self-dependent (nonlinear) coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estim
Exact results are obtained for random walks on finite lattice tubes with a single source and absorbing lattice sites at the ends. Explicit formulae are derived for the absorption probabilities at the ends and for the expectations that a random walk w
We give a new determinant expression for the characteristic polynomial of the bond scattering matrix of a quantum graph G. Also, we give a decomposition formula for the characteristic polynomial of the bond scattering matrix of a regular covering of
This paper is devoted to the study of a semiclassical black box operator $P$. We estimate the norm of its resolvent truncated near the trapped set by the norm of its resolvent truncated on rings far away from the origin. For $z$ in the unphysical she