ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible Flexoelectric Origin of the Lifshitz Transition in LaAlO$_3$/SrTiO$_3$ Interfaces

74   0   0.0 ( 0 )
 نشر من قبل William A. Atkinson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple experiments have observed a sharp transition in the band structure of LaAlO$_3$/SrTiO$_3$ (001) interfaces as a function of applied gate voltage. This Lifshitz transition, between a single occupied band at low electron density and multiple occupied bands at high density, is remarkable for its abruptness. In this work, we propose a mechanism by which such a transition might happen. We show via numerical modeling that the simultaneous coupling of the dielectric polarization to the interfacial strain (electrostrictive coupling) and strain gradient (flexoelectric coupling) generates a thin polarized layer whose direction reverses at a critical density. The Lifshitz transition occurs concomitantly with the polarization reversal and is first-order at $T=0$. A secondary Lifshitz transition, in which electrons spread out into semiclassical tails, occurs at a higher density.



قيم البحث

اقرأ أيضاً

83 - M. S. Prasad , G. Schmidt 2021
A number of recent studies indicate that the charge conduction of the LaAlO$_3$/SrTiO$_3$ interface at low temperature is confined to filaments which are linked to structural domain walls in the SrTiO$_3$ with drastic consequences for example for the temperature dependence of local transport properties. We demonstrate that as a consequences of this current carrying filaments on the nano-scale the magnetotransport properties of the interface are highly anisotropic. Our magnetoresistance measurements reveal that the magnetoresistance in different nanostructures ($<500nm$) is random in magnitude and sign, respectively. Warming up nanostructures above the structural phase transition temperature (105K) results in the significant change in MR. Even a sign change of the magnetoresistance is possible. The results suggest that domain walls that are differently oriented with respect to the surface exhibit different respective magnetoresistance and the total magnetoresistance is a result of a random domain wall pattern formed during the structural phase transition in the SrTiO$_3$ at cool down.
117 - Lu Li , C. Richter , S. Paetel 2010
Novel electronic systems forming at oxide interfaces comprise a class of new materials with a wide array of potential applications. A high mobility electron system forms at the LaAlO$_3$/SrTiO$_3$ interface and, strikingly, both superconducts and dis plays indications of hysteretic magnetoresistance. An essential step for device applications is establishing the ability to vary the electronic conductivity of the electron system by means of a gate. We have fabricated metallic top gates above a conductive interface to vary the electron density at the interface. By monitoring capacitance and electric field penetration, we are able to tune the charge carrier density and establish that we can completely deplete the metallic interface with small voltages. Moreover, at low carrier densities, the capacitance is significantly enhanced beyond the geometric capacitance for the structure. In the same low density region, the metallic interface overscreens an external electric field. We attribute these observations to a negative compressibility of the electronic system at the interface. Similar phenomena have been observed previously in semiconducting two-dimensional electronic systems. The observed compressibility result is consistent with the interface containing a system of mobile electrons in two dimensions.
At the LaAlO$_3$-SrTiO$_3$ interface, electronic phase transitions can be triggered by modulation of the charge carrier density, making this system an excellent prospect for the realization of versatile electronic devices. Here, we report repeatable transistor operation in locally gated LaAlO$_3$-SrTiO$_3$ field-effect devices of which the LaAlO$_3$ dielectric is only four unit cells thin, the critical thickness for conduction at this interface. This extremely thin dielectric allows a very efficient charge modulation of ${sim}3.2times10^{13}$ cm$^{-2}$ within a gate-voltage window of $pm1$ V, as extracted from capacitance-voltage measurements. These also reveal a large stray capacitance between gate and source, presenting a complication for nanoscale device operation. Despite the small LaAlO$_3$ thickness, we observe a negligible gate leakage current, which we ascribe to the extension of the conducting states into the SrTiO$_3$ substrate.
Localization of electrons in the two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ interface is investigated by varying the channel thickness in order to establish the nature of the conducting channel. Layers of SrTiO$_3$ were grown on NdGaO$_3 $ (110) substrates and capped with LaAlO$_3$. When the SrTiO$_3$ thickness is $leq 6$ unit cells, most electrons at the interface are localized, but when the number of SrTiO$_3$ layers is 8-16, the free carrier density approaches $3.3 times 10^{14}$ cm$^{-2}$, the value corresponding to charge transfer of 0.5 electron per unit cell at the interface. The number of delocalized electrons decreases again when the SrTiO$_3$ thickness is $geq 20$ unit cells. The $sim{4}$ nm conducting channel is therefore located significantly below the interface. The results are explained in terms of Anderson localization and the position of the mobility edge with respect to the Fermi level.
The 2-dimensional electron system at the interface between LaAlO$_{3}$ and SrTiO$_{3}$ has several unique properties that can be tuned by an externally applied gate voltage. In this work, we show that this gate-tunability extends to the effective ban d structure of the system. We combine a magnetotransport study on top-gated Hall bars with self-consistent Schrodinger-Poisson calculations and observe a Lifshitz transition at a density of $2.9times10^{13}$ cm$^{-2}$. Above the transition, the carrier density of one of the conducting bands decreases with increasing gate voltage. This surprising decrease is accurately reproduced in the calculations if electronic correlations are included. These results provide a clear, intuitive picture of the physics governing the electronic structure at complex oxide interfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا