ﻻ يوجد ملخص باللغة العربية
Increasing research efforts have been made to improve the energy efficiency of variable impedance actuators (VIAs) through reduction of energy consumption. However, the harvesting of dissipated energy in such systems remains underexplored. This study proposes a novel variable damping module design enabling energy regeneration in VIAs by exploiting the regenerative braking effect of DC motors. The proposed damping module uses four switches to combine regenerative and dynamic braking, in a hybrid approach that enables energy regeneration without reduction in the range of damping achievable. Numerical simulations and a physical experiment are presented in which the proposed module shows an optimal trade-off between task performance and energy efficiency.
Energy efficiency is a crucial issue towards longterm deployment of compliant robots in the real world. In the context of variable impedance actuators (VIAs), one of the main focuses has been on improving energy efficiency through reduction of energy
Compliant robotics have seen successful applications in energy efficient locomotion and cyclic manipulation. However, exploitation of variable physical impedance for energy efficient sequential movements has not been extensively addressed. This work
In this paper we present AWEsome (Airborne Wind Energy Standardized Open-source Model Environment), a test platform for airborne wind energy systems that consists of low-cost hardware and is entirely based on open-source software. It can hence be use
In this paper we propose an improvement for flowpipe-construction-based reachability analysis techniques for hybrid systems. Such methods apply iterative successor computations to pave the reachable region of the state space by state sets in an over-
The output impedance matrix of a grid-connected converter plays an important role in analyzing system stability. Due to the dynamics of the DC-link control and the phase locked loop (PLL), the output impedance matrices of the converter and grid are d