ﻻ يوجد ملخص باللغة العربية
Many intriguing phenomena occur for electrons under strong magnetic fields. Recently, it was proposed that an appropriate strain texture in graphene can induce a synthetic gauge field, in which the electrons behave like in a real magnetic field. This opened the door to control quantum transport by mechanical means and to explore unprecedented physics in high-field regime. Such studies have been achieved in molecular and photonic lattices. Here we report the first experimental realization of giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to acoustic graphene. Benefited from the controllability of our macroscopic platform, we observe the acoustic Landau levels in frequency-resolved spectroscopy and their spatial localization in pressure-field distributions. We further visualize the quantum-Hall-like edge states (connected to the zeroth Landau level), which have been elusive before owing to the challenge in creating large-area uniform pseudomagnetic fields. These results, highly consistent with our full-wave simulations, establish a complete framework for artificial structures under constant pseudomagnetic fields. Our findings, conceptually novel in acoustics, may offer new opportunities to manipulate sound.
Measurements in very low disorder two-dimensional electrons confined to relatively wide GaAs quantum well samples with tunable density reveal reentrant $ u=1$ integer quantum Hall states in the lowest Landau level near filling factors $ u=4/5$ and 6/
A quantum Hall edge state provides a rich foundation to study electrons in 1-dimension (1d) but is limited to chiral propagation along a single direction. Here, we demonstrate a versatile platform to realize new 1d systems made by combining quantum H
We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars. A strong synthetic field is induced in both the s and p orbital bands by engineering a uniaxial hopping g
We consider the dephasing rate of an electron level in a quantum dot, placed next to a fluctuating edge current in the fractional quantum Hall effect. Using perturbation theory, we show that this rate has an anomalous dependence on the bias voltage a
We present a microscopic theory of the chiral one-dimensional electron gas system localized on the sidewalls of magnetically-doped Bi$_2$Se$_3$-family topological insulator nanoribbons in the quantum anomalous Hall effect (QAHE) regime. Our theory is